Advertisement

Cereal Research Communications

, Volume 41, Issue 1, pp 97–105 | Cite as

The Combined Effect of Water Limitation and UV-B Radiation on Common and Tartary Buckwheat

  • M. GermEmail author
  • B. Breznik
  • N. Dolinar
  • I. Kreft
  • A. Gaberščik
Physiology

Abstract

The effects of elevated UV-B radiation and water limitation have been evaluated in terms of the biochemical, physiological, morphological and productivity responses of common buckwheat (Fagopyrum esculentum Moench) and tartary buckwheat (Fagopyrum tataricum Gaertn.). Research was carried out under semi-controlled conditions. Common and tartary buckwheat were exposed to UV-B radiation and water limitation in different combinations. Photosynthetic pigments, UV-absorbing compounds, potential and effective photochemical efficiency, stomatal conductance, plant morphology and biomass production were monitored. The negative effect of elevated UV-B radiation on growth parameters in common buckwheat was highly significant in watered plants but less pronounced in plants exposed to water limitation. However, in tartary buckwheat UV-B radiation mitigated the negative effects of water limitation, resulting in increased biomass production.

Keywords

Fagopyrum esculentum Fagopyrum tataricum UV-B radiation drought plant biomass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albritton, D.L., Meira Filho, L.G. 2001. Technical summary of the working group I report. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskel, K., Johnson, C.A. (eds), Climate Change 2001: The Scientific Basis. Cambridge Univ. Press, Cambridge, UK, pp. 71–73.Google Scholar
  2. Al-Oudat, M., Baydoun, S.A., Mohammad, A. 1998. Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) broad beans (Vicia faba) under field conditions. Environ. Experiment. Bot. 40:11–16.CrossRefGoogle Scholar
  3. Ballaré, C.L., Scopel, A.L., Stapelton, A.E., Yanovsky, M.J. 1996. Solar ultraviolet-B radiation affects emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant. Physiol. 112:161–170.CrossRefGoogle Scholar
  4. Barsig, M., Malz, R. 2000. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation. Environ. Experiment. Bot. 43:121–130.CrossRefGoogle Scholar
  5. Bettaieb, I., Zakhama, N., Aidi Wannes, W., Kchouk, M.E., Marzouk, B. 2009. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 120:271–275.CrossRefGoogle Scholar
  6. Björn, L.O., Murphy, T.M. 1985. Computer calculation of solar ultraviolet radiation at ground level. Physiol. Vég. 23:555–561.Google Scholar
  7. Björn, L.O., Teramura, A.H. 1993. Simulation of daylight ultraviolet radiation and effects of ozone depletion. In: Young, A.R., Björn, L.O., Moan, J., Nultsch, W. (eds), Environmental UV Photobiology. Plenum-Press, New York, London, pp. 40–71.Google Scholar
  8. Breznik, B., Germ, M., Gaberšcik, A., Kreft, I. 2005. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Photosyntetica 43:583–589.CrossRefGoogle Scholar
  9. Desclaux, D., Huynh, T.T., Roumet, P. 2000. Identification of soybean plant characteristics that indicate the timing of drought stress. Crop. Sci. 40:716–722.CrossRefGoogle Scholar
  10. Gaberšcik, A., Novak, M., Trošt Sedej, T., Mazej, Z., Germ, M., Björn, L.O. 2001. The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis. In: Rozema, J., Manetas, Y., Björn, L.O. (eds), Responses of Plant to UV-B Radiation (Advances in Vegetation Science, vol. 18). Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 51–56.Google Scholar
  11. Gaberšcik, A., Germ, M., Škof, A., Drmaz, D., Trošt, T. 2002a. UV-B radiation screen and respiratory potential in two aquatic primary producers: Scenedesmus quadricauda and Ceratophyllum demersum. Verh. Int.-Ver. Theo. Angewan. Limnol. 27:1–4.Google Scholar
  12. Gaberšcik, A., Voncina, M., Trošt, T., Germ, M., Björn, L.O. 2002b. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. J. Photobiol. Biol. 66:30–42.CrossRefGoogle Scholar
  13. Gao, W., Zheng, Y., Slusser, J.R., Heisler, G.M. 2003. Impact of enhanced ultraviolet-B irradiance on cotton growth, development, yield, and qualities under field conditions. Agric. Forest Meteorol. 120:214–248.Google Scholar
  14. Germ, M., Kreft, I., Osvald, J. 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant. Physiol. Biochem. 43:445–448.CrossRefGoogle Scholar
  15. Germ, M., Mazej, Z., Gaberšcik, A., Trošt Sedej, T. 2006. The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. Hydrobiologia (Den Haag) 570:47–51.CrossRefGoogle Scholar
  16. Germ, M., Stibilj, V., Kreft, S., Gaberšcik, A., Pajk, F., Kreft, I. 2009. Selenium concentration in St. John’s wort (Hypericum perforatum L.) herb after foliar spraying of young plants under different UV-B radiation levels. Food Chem. 117:204–206.CrossRefGoogle Scholar
  17. Halbrecq, B., Romedenne, P., Ledent, J.F. 2005. Evolution of flowering, ripening and seed set in buckwheat (Fagopyrum esculentum Moench): Quantitative analysis. Eur. J. Agron. 23:209–224.CrossRefGoogle Scholar
  18. Hoffmann, B. 2008. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res. Commun. 36:269–278.CrossRefGoogle Scholar
  19. Larcher, W. 2003. Physiological Plant Ecology, 4th edition. Springer Verlag, Berlin, Germany, pp. 232–295.CrossRefGoogle Scholar
  20. Lichtenthaler, H.K., Buschmann, C. 2001. Extraction of photosynthetic tissues: chlorophylls and carotenoids. In: Current Protocols in Food Analytical Chemistry. John Wiley&Sons Inc., New York, USA, F.4.2.1–4.2.6.Google Scholar
  21. Lizana, X.C., Hess, S., Calderini, D.F. 2009. Crop phenology modifies wheat responses to increased UV-B radiation. Agri. Forest Meteorol. 149:1964–1974.CrossRefGoogle Scholar
  22. McKersie, B.D., Leshem, Y.Y. 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht, 256 pp.CrossRefGoogle Scholar
  23. Mirecki, R.M., Teramura, A.H. 1984. Effects of ultraviolet-B irradiance on soybean. Plant Physiol. 74:475–480.CrossRefGoogle Scholar
  24. Nogués, S., Baker, R.N. 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J. Experiment. Bot. 348:1309–1317.Google Scholar
  25. Ozbolt, L., Kreft, S., Kreft, I., Germ, M., Stibilj, V. 2008. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem. 110:691–696.CrossRefGoogle Scholar
  26. Qaderi, M.M., Basraon, N.K., Chinnappa, C.C., Reid, D.M. 2010. Combined effects of temperature, ultraviolet-B radiation, and watering regime on growth and physiological processes in canola (Brassica napus) seedlings. Int. J. Plant Sci. 171:466–481.CrossRefGoogle Scholar
  27. Rozema, J., Bjorn, L.O., Bornman, J.F., Gaberšcik, A., Hader, D.P., Trošt, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P., Lebert, M., He, Y.Y., Buffoni-Hall, R., de Bakker, N.V., van de Staaij, J., Meijkamp, B.B. 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems — an experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B 66:2–12.CrossRefGoogle Scholar
  28. Shen, X.F., Zhou, Y.Y., Duan, L.S., Li, Z.H., Eneji, A.E., Li, J.M. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant. Physiol. 167:1248–1252.CrossRefGoogle Scholar
  29. Smrkolj, P., Stibilj, V., Kreft, I., Germ, M. 2006. Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chem. 96:675–681.CrossRefGoogle Scholar
  30. Schmitz-Hoerner, R., Weissenbock, G. 2003. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:234–256.CrossRefGoogle Scholar
  31. Tian, X.R., Lei, Y.B. 2007. Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Russian J. of Plant Physiol. 54:676–682.CrossRefGoogle Scholar
  32. Tsormpatsidis, E., Henbest, R.G.C., Battey, N.H., Hadley, P. 2010. The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system. Ann. Appl. Biol. 156:357–366.CrossRefGoogle Scholar
  33. Tsuji, K., Ohnishi, O. 2009. Morphological characters in cultivated, wild and weedy Tartary buckwheat. Fagopyrum 26:3–9.Google Scholar
  34. Trošt Sedej, T., Gaberšcik, A. 2008. The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees (Berl. West) 22:423–435.CrossRefGoogle Scholar
  35. Van Kooten, O., Snel, J.F.H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147–150.CrossRefGoogle Scholar
  36. Wang, W., Vinocur, B., Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1–14.CrossRefGoogle Scholar
  37. Zhang, Z., Wang, Z., Zhao, Z. 2003. Traditional buckwheat growing and utilization in China. In: Kreft, I., Chang, K., Choi, Y.S., Park, C.H. (eds), Ethnobotany of Buckwheat. Jinsol Publishing Co, Seoul, South Korea, pp. 9–20.Google Scholar
  38. Zuk-Golaszewska, K., Upadhyaya, M.K., Golaszewski, J. 2003. The effect of UV-B radiation on plant growth and development. Plant Soil Environ. 49:135–140.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Germ
    • 1
    Email author
  • B. Breznik
    • 1
  • N. Dolinar
    • 1
  • I. Kreft
    • 2
  • A. Gaberščik
    • 1
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Agronomy, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations