Advertisement

Cereal Research Communications

, Volume 41, Issue 1, pp 45–53 | Cite as

QTL Mapping for Grain Yield Conditioned on Its Component Traits in Two Ril Populations of Bread Wheat

  • A. M. Ding
  • F. Cui
  • J. Li
  • C. H. Zhao
  • L. Wang
  • X. L. Qi
  • Y. G. Bao
  • X. F. Li
  • H. G. WangEmail author
Genetics

Abstract

Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.

Keywords

grain yield yield components conditional analysis QTL mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2013_41010045_MOESM1_ESM.pdf (568 kb)
Supplementary material, approximately 568 KB.

References

  1. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithod, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Ttiticum astivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  2. Coles, N.D., Mcmullen, M.D., Balint-Kurti, P.J., Pratt, R.C., Holland, J.B. 2010. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics Society of America 184:799–812.Google Scholar
  3. Cui, F., Li, J., Ding, A.M., Zhao, C.H., Wang, L., Wang, X.Q., Li, S.S., Bao, Y.G., Li, X.F., Feng, D.S., Kong, L.R., Wang, H.G. 2011. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor. Appl. Genet. 122:1517–1536.CrossRefGoogle Scholar
  4. Doerge, R.W. 2002. Multifactorial genetics: Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. 3:43–52.CrossRefGoogle Scholar
  5. Guo, L.B., Xing, Y.Z., Mei, H.W., Xu, C.G., Shi, C.H., Wu, P., Luo, L.J. 2005. Dissection of component QTL expression in yield formation in rice. Plant Breeding 124:127–132.CrossRefGoogle Scholar
  6. Huang, X.Q., Coster, H., Ganal, M.W., Roder, M.S. 2003. Advanced backcross QTL analysis for identification of quantitative trait loci alleles from wild relatives of wheat (Triticun aestivum L.). Theor. Appl. Genet. 106:1379–1389.CrossRefGoogle Scholar
  7. Huang, X.Q., Kempf, H., Canal, M.W., Roder, M.S. 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticun aestivum L.). Theor. Appl. Genet. 109:933–943.CrossRefGoogle Scholar
  8. Huang, X.Q., Cloutier, S., Lycar, L., Radovanovic, N., Humpphreys, D.G., Noll, J.S., Somers, D.J., Brown, P.D. 2006. Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from 2 Canadian wheats (Triticun aestivum L.). Theor. Appl. Genet. 113:753–766.CrossRefGoogle Scholar
  9. Kirigwi, F.M., Ginkel, M.V., Brown-Guedira, G., Gill, B.S., Paulsen, G.N., Fritz, A.K. 2007. Makers associated with a QTL for grain yield in wheat under drought. Mol. Breed. 20:401–413.CrossRefGoogle Scholar
  10. Kumar, N., Kulwal, P.L., Balyan, H.S., Gupta, P.K. 2007. QTL mapping for yield and yield contributing traits in 2 mapping population of bread wheat. Mol. Breed. 19:163–177.CrossRefGoogle Scholar
  11. Li, H.H., Ye, G.Y., Wang, J.K. 2007a. A modified algorithm for the improvement of composite interval mapping. Genetics Society of America 175:361–374.Google Scholar
  12. Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Li, L.Z., Chen, H.M., Fan, Y.D., Sun, H.Y., Zhao, X.H., Lei, T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H. 2007b. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20:167–178.CrossRefGoogle Scholar
  13. Lin, H.X., Qian, H.R., Zhuang, J.Y., Lu, J., Min, S.K., Xiong, Z.M., Huang, N., Zheng, K.L. 1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor. Appl. Genet. 92:920–927.CrossRefGoogle Scholar
  14. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D.Z., Farmer, P., Saker, L., Clarkson, D.T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberrosa, R., Sanguineti, M.C., Hollington, P.A., Aragues, R., Royo, A., Dodig, D. 2005. A high-density genetic map of hexaploid wheat (Triticun aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 110:865–880.CrossRefGoogle Scholar
  15. Risch, N.J. 2000. Searching for genetic determinants in the new millennium. Science 405:847–856.Google Scholar
  16. Varshney, R.K., Prasad, M., Roy, J.K., Kumar, N.H.S., Dhaliwal, H.S., Balyan, H.S., Gupta, P.K. 2000. Identification of eight chromosomes and a microsatellite maker on 1AS associated with QTL for grain weight in bread wheat. Theor. Appl. Genet. 100:1290–1294.CrossRefGoogle Scholar
  17. Xiao, J., Li, J., Yuan, L., Tanksley, S.D. 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet. 92:230–244.CrossRefGoogle Scholar
  18. Yano, M., Sasaki, T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35:145–153.CrossRefGoogle Scholar
  19. Zhu, J. 1992. Mixed model approaches for estimating genetic variance and covariance. J. Biomath. 7:1–11.Google Scholar
  20. Zhu, J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics Society of America 141:1633–1639.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. M. Ding
    • 1
    • 2
  • F. Cui
    • 1
    • 3
  • J. Li
    • 1
    • 4
  • C. H. Zhao
    • 1
  • L. Wang
    • 5
  • X. L. Qi
    • 1
  • Y. G. Bao
    • 1
  • X. F. Li
    • 1
  • H. G. Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Taian Subcenter of National Wheat Improvement Center, Agronomy CollegeShandong Agricultural UniversityTaianChina
  2. 2.Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdaoChina
  3. 3.CAS Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyShijiazhuangChina
  4. 4.Handlan Industrial Zone Tianxing Biotechnology CO., LTD.BinzhouChina
  5. 5.Municipal Academy of Agricultural SciencesJiningChina

Personalised recommendations