Cereal Research Communications

, Volume 40, Issue 3, pp 307–333 | Cite as

New Aspects in Quality Related Wheat Research: II. New Methodologies for Better Quality Wheat

  • F. BékésEmail author


The aim of this two-part review is to highlight some of the numerous newer aspects of quality related wheat research and its achievements in the last two decades. The first part described the directions of more and more multi-interdisciplinary wheat quality oriented research with an enlarging gap between breeding — and industry oriented quality research. These general comments were followed by the session describing our understanding the role of components of wheat flour determining bread-making quality. This second part of the review overlooks the new directions of quality related basic and applied research in pre-breeding and breeding as well as in the wheat industry, including genetic, molecular biological, biochemical chemical, instrumental and model-making/predictive methodologies. A brief coverage of the directions and achievement in the more and more important two non-traditional quality areas, the nutrition- and health-related quality attributes are followed by a short conclusion and speculation on future direction.


breadmaking quality small-scale dough testing molecular markers QTL analysis Protein Quality Index wheat sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altpeter, F., Vasil, V., Srivastava, V., Vasil, I.K. 1996. Integration and expression of high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat. Biotechnol. 14:1155–1159.CrossRefPubMedGoogle Scholar
  2. Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P.J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T.T., Nugent, G., Raemakers, K., Romano, A., Somers, D.A., Stoger, E., Taylor, N., Visser, R. 2005. Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breed. 15:305–327.CrossRefGoogle Scholar
  3. Alvarez, M.L., Gomez, M., Carillo, J.M., Vallejos, R.H. 2001. Analysis of dough functionality of lours from transgenic wheat. Mol. Breed. 8:103–108.CrossRefGoogle Scholar
  4. Amano, M.H., Ogawa, K., Kojima, T., Kamidaira, S., Suetsugu, M., Yoshihama, T., Satoh, T., Samejima, I., Matsumoto, I. 1998. Identification of the major allergens in wheat floor responsible for baker’s asthma. Biochem. J. 330:1229–1234.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anand, A., Trick, H.N., Gill, B.S., Muthukrishnan, S. 2003. Stable transgene expression and random gene silencing in wheat. Plant Biotechnol. J. 1:241–251.CrossRefPubMedGoogle Scholar
  6. Anderson, R.P., Degano, P., Godkin, A.J., Jewell, D.P., Hill, A.V.S. 2000. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptid as the dominant A gliadin T-cell epitope. Nature (Med). 6:337–342.CrossRefGoogle Scholar
  7. Anderson, R.P., Wieser, H. 2006. Medical applications of gluten-composition knowledge. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St. Paul, MN, USA, pp. 387–409.CrossRefGoogle Scholar
  8. Andersson, R.S., Hamalainen, M., Aman, P. 1994. Predictive modelling of the bread-making performance and dough properties of wheat. J. Cereal Sci. 20:129–138.CrossRefGoogle Scholar
  9. Appels, R., Barsby, T., Risacher, T., Békés, F. 2011. Linking the genome to phenotypes in wheat: Advances in technologies and concepts. In: Bonjean, A., Angus, W., van Ginkel, M. (eds), The World Wheat Book — a History of Wheat Breeding. Vol 2. Lavoisier, London, UK, pp. 709–748.Google Scholar
  10. Araki, E., Ikeda, T.M., Ohgihara, Y., Toyoda, A., Yano, H. 2008. Development of transgenic rice expressing wheat HMW and LMW GS proteins. Breeding Sci. 58:121–128.CrossRefGoogle Scholar
  11. Arendt, E.K., Renzetti, S., Moore, M.M. 2008. Novel approaches in the design of gluten-free cereal products. Food Sci. and Technol. 22:43–46.Google Scholar
  12. Armentia, A., Martin-Santos, J.M., Blanco, M. 1990. Exercise induced anaphylaxis reaction to grain flows. Ann. Allergy 65:149–151.PubMedGoogle Scholar
  13. Baracskai, I., Balázs, G., Liu, L., Ma, W., Oszvald, M., Newberry, M., Tömösközi, S., Láng, L., Bedõ, Z., Békés, F. 2011. A retrospective analysis of HMW and LMW glutenin alleles of cultivars bred in Martonvásár, Hungary. Cereal Res. Commun. 39:225–236.CrossRefGoogle Scholar
  14. Barcelo, P., Rasco-Gaunt, S., Thorpe, C., Lazzeri, P.A. 2001. Transformation and gene expression. In: Shewry, P.R., Lazzeri, P.A., Edwards, K.J. (eds), Advances in Plant Pathology. Academic Press, London, UK, Vol. 34. pp. 59–126.Google Scholar
  15. Barro, F., Rooke, L., Békés, F., Gras, P., Tatham, A.S., Fido, R.J., Lazzeri, P., Shewry, P.R., Barcelo, P. 1997. Transformation of wheat with HMW subunit genes results in improved functional properties. Nature Biotechnol. 15:1295–1299.CrossRefGoogle Scholar
  16. Bason, M.L., Dang, J., Guyatt, M.K., Booth, R.J. 2006. Emulating industrial dough mixing using the dough LAB. Proc. AACCI Meeting, World Grain Summit. San Francisco, USA, 2006 Sept 17–20. No. 187. (abstract) p. 134.Google Scholar
  17. Baudo, M.M., Lyons, R., Powers, S., Pastori, G.M., Edwards, K.J., Holdswort, M.J., Shewry, P.R. 2006. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechn. J. 4:369–380.CrossRefGoogle Scholar
  18. Beecher, B., Bettge, A., Smidansky, E., Giroux, M.J. 2002. Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theor. Appl. Genet. 105:870–877.CrossRefPubMedGoogle Scholar
  19. Békés, F. 2012. New aspects in quality related wheat research: I. Challenges and achievements. Cereal Res. Commun. 40 (2):159–184.CrossRefGoogle Scholar
  20. Békés, F., Lukow, O., Uthayakumaran, S., Mann, G. 2000a. Small-scale dough testing methods. In: Shewry, P.R., Lookhart, G. (eds), Wheat Gluten Protein Analysis. AACC, St. Paul, MN, USA, pp. 173–198.Google Scholar
  21. Békés, F., Southan, M.S., Tömösközi, S., Nanasi, J., Gras, P.W., Varga, J., McCorquodale, J., Osborne, B.G. 2000b. Comparative studies on a new micro scale laboratory mill. In: Panozzo, J.F., Ratcliffe, M., Wootton, M., Wrigley, C.W. (eds), Proc. 49. RACI Conf. RACI, Melbourne, Australia, pp. 483–487.Google Scholar
  22. Békés, F., Kemény, S., Morell, M.K. 2006. An integrated approach to predicting end-product quality of wheat. Eur. J. Agron. 25:155–162.CrossRefGoogle Scholar
  23. BeMiller, J.N. 2008. Hydrocolloids. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 203–216.CrossRefGoogle Scholar
  24. Berti, C., Roncoroni, L., Falini, M.L., Caramanico, R., Dolfini, E., Bardella, M.T., Terrani, L.E.C., Forlani, F. 2007. Celiac-related properties of chemically and enzymatically modified gluten proteins. J. Agric. Food Chem. 55:2482–2488.CrossRefPubMedGoogle Scholar
  25. Blechl, A., Anderson, O.D. 1996. Expression of a novel high-molecular weight glutenin subunit gene in transgenic wheat. Nature Biotech. 14:875–879.CrossRefGoogle Scholar
  26. Blechl, A., Lin, J., Nguyen, S., Chan, R., Anderson, O.D., Dupont, F.M. 2007. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J. Cereal Sci. 45:172–183.CrossRefGoogle Scholar
  27. Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B., Majdabadi, A. 2010. Effects of g radiation on germination physiological aspects of wheat seedlings. Pak. J. Bot. 42:2281–2290.Google Scholar
  28. Brabender, C.W. 1932. Studies with the Farinograph fro predicting the most suitable types of American export wheats and flours for mixing with European soft wheats and flours. Cereal Chem. 9:617–622.Google Scholar
  29. Branlard, G., Dardevet, M., Amiour, N., Igrejas, G. 2003. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 50:669–679.CrossRefGoogle Scholar
  30. Branlard, G., Rousset, M., Loisel, W., Autran, J.C. 1991. Comparison of 46 technological parameters used in breeding for bread wheat quality evaluation. J. Genet. Breed. 45:263–280.Google Scholar
  31. Brennen, J.P., O’Brien, L. 1991. An economic investigation of early-generation quality testing in a wheaqt breeding programme. Plant Breeding 106:132–140.CrossRefGoogle Scholar
  32. Brijs, K., Courtin, C.M., Goesaert, H., Gebruers, K., Delcour, J.A., Shewry, P.R., Hendy, R.J., Nicolas, J., Potus, J., Garcia, R., Davidou, S. 2009. Enzymes and enzyme inhibitors endogenous in wheat. In: Khan, K., Shewry, P.R. (eds), Wheat Chemistry and Technology. AACC Press, St. Paul, MN, USA. pp. 401–436.CrossRefGoogle Scholar
  33. Bushuk, W., Békés, F. 2002. Contribution of protein to flour quality. In: Salgó, A., Tömösközi, S., Lásztity, R. (eds), Proc. Novel Raw Materials, Technologies and Products — New Challenge for the Quality Control. ICC, Vienna, Austria, pp. 4–9.Google Scholar
  34. Catassi C., Fasano, A. 2008. Celiac disease. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 1–28.Google Scholar
  35. Chao, S., Sharp, P.J., Worland, A.J., Koebner, R.M.D., Gale, M.D. 1989. RFLP-based genetic linkage maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78:495–504.CrossRefGoogle Scholar
  36. Chavez, F.C., Barca, A.M.C. 2010. Trends in wheat technology and modification of gluten proteins for dietary treatment of coeliac disease patients. J. Cereal Sci. 52:337–341.CrossRefGoogle Scholar
  37. Chen, J., Lan, P., Tarr, A., Yan, Y.M., Francki, M., Appels, R., Ma, W. 2007. MALDI-TOF based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. Rapid Comm. Mass Spectr. 21:2913–2917.CrossRefGoogle Scholar
  38. Collard, B.C.Y., Mackill, D.J. 2008. Marker-assisted selection: An approach for precision plant breeding in the 21st century. Philos. Trans. R. Soc. B-Biol. Sci. 363:557–572.CrossRefGoogle Scholar
  39. Cornish, G.B., Békés, F., Eagles, H. A., Payne, P.I. 2006. Prediction of dough properties for bread wheats. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACC Press, St. Paul, MN, USA, pp. 243–280.CrossRefGoogle Scholar
  40. Crossa, J., Campos, G., Perez, P., Gianola, D., Burueno, J., Araus, J.L., Makumbi, D., Singh, R.P., Dresigacker, S., Yan, J., Arief, V., Banzinger, M., Braun, H.J. 2010. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cummings, J.H., MacFarlane, G.T. 1997. The role of intestinal bacteria in nutrient metabolism. Clin. Nutr. 16:3–11.CrossRefGoogle Scholar
  42. Darlington, H., Fido, R., Tatham, A.S., Jones, H., Salmon, S.E., Shewry, P.R. 2003. Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J. Cereal Sci. 38:301–306.CrossRefGoogle Scholar
  43. De Angelis, M., Coda, R., Silano, M. 2006. Fermentation by selected sourdough lactic acid bacteria to decrease the intolerance to rye and barley flours. J. Cereal Sci. 43:301–314.CrossRefGoogle Scholar
  44. Decock, P., Capelle, S. 2005. Bread technology and sourdough technology. Trends in Food Sci. Technol. 16:113–120.CrossRefGoogle Scholar
  45. Di Cagno, R., Barbato, M., Di Camillo, F., Rizzello, V., DeAngelis, M., De Vincenzi, M., Gobbetti, M., Cucchiara, S. 2010. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: A pilot study. J. Pediatric Gastroenterol. Nutr. 51:777–783.CrossRefGoogle Scholar
  46. Dick, J.W., Shuey, W.C. 1976. A computerized method for evaluating durum wheat quality. Cereal Chem. 53:910–915.Google Scholar
  47. Dong, J.M.C., Bason, M.L., Rooth, R.I. 2007. Studies of mixing characteristics and elasticity of dough using the Newport Scientific micro-doughLAB. Newport Sci. World 11:1–4.Google Scholar
  48. Dong, C., Dalton-Morgan, C., Vincent, K., Sharp, P. 2009a. A modified TILLING method for wheat breeding. Plant Genome 2:39–47.CrossRefGoogle Scholar
  49. Dong, C., Vincent, K., Sharp, P. 2009b. Simultaneous mutation detection of three homoeologous genes in wheat by high resolution melting analysis and Mutation Surveyor. BMC Plant Biol. 9:143.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dowell, F.E., Maghirang, E.B., Xie, F., Lookhart, G.L., Pierce, R.O., Seabourn, B.W., Bean, S.R., Wilson, J.D., Chung, O.K. 2006. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chem. 83:529–536.CrossRefGoogle Scholar
  51. Dowell, F.E., Maghirang, E.B., Pierce, R., Lookhart, G.R., Bean, S.R., Xie, X., Caley, M.S., Wilson, J.D., Seabourn, B.W., Ram, D., Park, S.H., Chung, O.K. 2008. Relationship of bread quality to kernel, flour, and dough properties. Cereal Chem. 85: 82–91.CrossRefGoogle Scholar
  52. Drossman, D.A., Whitehead, W.E., Camilleri, M. 1997. Irritable bowel syndrome: A technical review for practice guideline development. Gastroenterol. 112:2120–2137.CrossRefGoogle Scholar
  53. Dumur, J., Jahier, J., Bancel, E., Laurière, M., Bernard, M., Branlard, G. 2004. Proteomic analysis of aneuploid lines in the homeologous group 1 of the hexaploid wheat cultivar Courtot. Proteomics 4:2685–2695.CrossRefGoogle Scholar
  54. Eagles, H.A., Hollamby, G.J., Gororo, N.N., Eastwood, R.F. 2002. Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Aust. J. Agric. Res. 53:367–377.CrossRefGoogle Scholar
  55. Ehren, J., Govindarajan, S., Morón, B., Minshull, J., Khosla, C. 2008. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng., Design Select. 21:699–707.CrossRefGoogle Scholar
  56. Endo, T.R., Gill, B.S. 1996. The deletion stocks of common wheat. J. Hered. 87:295–307.CrossRefGoogle Scholar
  57. Fisher, R.A., O’Brien, L., Quail, K.J. 1989. Early generation selection in wheat. II. Grain quality. Austr. J. Agric. Res. 40:1135–1142.CrossRefGoogle Scholar
  58. Ganzle, M.G., Loponen, J., Gobbetti, M. 2008. Proteolysis in sourdough fermentation: mechanism and potential for improved bread quality. Trends Food Sci. Technol. 19:513–521.CrossRefGoogle Scholar
  59. Gibson, P.R. 2007. Review article: Fructose malabsorption and the bigger picture. Aliment. Pharmacol. Ther. 25:349–363.CrossRefGoogle Scholar
  60. Gibson, P.R., McCartney, A.L., Rastall, R.A. 2005. Prebiotics and resistance to gastrointestinal infections. Br. J. Nutr. 93 (Suppl. 1):S31–S34.CrossRefPubMedGoogle Scholar
  61. Gibson, P.R., Shepherd, S.J. 2005. Food for thought: Western lifestyle and susceptibility to Crohn’s disease: the FODMAP hypothesis. Alim. Pharm. Ther. 2:1399–1409.CrossRefGoogle Scholar
  62. Gobbetti, M., De Angelis, M., Di Cagno, R., Rizzello, C.G. 2008. Sourdough/lactic acid bacteria. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 267–288.CrossRefGoogle Scholar
  63. Goesaert, H., Courtin, C.M., Delcour, J.A. 2008. Use of enzymes in the production of cereal-based functional foods and food ingredients. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 237–266.CrossRefGoogle Scholar
  64. Gras, P.W., Hibberd, G.E., Walker, C.E. 1990. Electronic sensing and interpretation of dough properties using a 35-gram Mixograph. Cereal Foods World 35:568.Google Scholar
  65. Gras, P.W., O’Brien, L. 1992. Application of a two-gram Mixograph to early generation selection for dough strength. Cereal Chem. 69:254–257.Google Scholar
  66. Gras, P.W., Békés, F. 1996. Small-scale testing: The development of instrumentation and application as a research tool. In: Wrigley, C.W. (ed.), Proc. 6th Int. Gluten Workshop. RACI, Melbourne, Australia, pp. 506–510.Google Scholar
  67. Gras, P., Rath, C.R., Békés, F., Zhen, Z. 1996. A method for determining dough extensibility using 2.5 g of flour. In: Williams, Y.A., Wrigley, C.W., Proc. 45th RACI Conference, Adelaide. RACI, Melbourne, Australia, pp. 407–411.Google Scholar
  68. Gras, P.W., Carpenter, H.C., Anderssen, R.S. 2000. Modelling the developmental rheology of wheat flour dough using extension tests. J. Cereal Sci. 31:1–13.CrossRefGoogle Scholar
  69. Graybosch, R., Peterson, J.C., Moore, K.J., Steams, M., Grant, D.L. 1993. Comparative effects of wheat flour protein, lipid and pentosan composition in relation to baking and milling quality. Cereal Chem. 70:95–101.CrossRefGoogle Scholar
  70. Gupta, R.B., Békés, F., Wrigley, C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: correlation studies. Cereal Chem. 68:328–333.Google Scholar
  71. Haley, S.D., May, R.D., Seabourn, B.W., Chung, O.K. 1999. Relational database system for summarization and interpretation of hardwinter wheat regional quality data. Crop Sci. 39:309–315.Google Scholar
  72. Haraszi, R., Gras, P.W., Tömösközi, S., Salgó, A., Békés, F. 2004. Application of a micro Z-arm mixer to characterize mixing properties and water absorption of wheat flour. Cereal Chem. 81:555–560.CrossRefGoogle Scholar
  73. Haraszi, R., Chassaigne, H., Macquet, A., Ulberth, F. 2011. Analytical methods for detection of gluten in food — last method developments in support to the legislations on labelling of foodstuffs. J. AOAC 94:1–20.Google Scholar
  74. Hischenhuber, I., Crevel, B., Maki, J.M., Moneret-Vautrin, D.A. 2006. Review article: Safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment. Pharmacol. Theor. 23:559–575.CrossRefGoogle Scholar
  75. Hogg, A.C., Beecher, B., Martin, J.M., Meyer, F., Talbert, L., Lanning, S., Giroux, M.J. 2005. Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci. 45:871–878.CrossRefGoogle Scholar
  76. Howarth, J.R., Jacquet, J.N., Doherty, A., Jones, H.D., Cannell, M.E. 2005. Molecular genetic analysis of silencing in two lines of Triticum aestivum transformed with the reporter gene construct pAHC25. Ann. Appl. Biol. 146:311–320.CrossRefGoogle Scholar
  77. Howitt, C.A., Tamás, L., Solomon, R., Gras, P.W., Morell, M.K., Békés, F., Appels, R. 2003. Modifying flour to improve functionality. In: Cauvain, S.P. (ed.), Bread Making: Improving Quality. CRC Press, Boston, New York, USA, pp. 220–252.CrossRefGoogle Scholar
  78. Howitt, C.A., Gale, K.R., Juhász, A. 2006. Diagnostic markers for quality. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin: The Unique Balance of Wheat Quality. AACCI Press, St. Paul, MN, USA, pp. 333–361.CrossRefGoogle Scholar
  79. Howitt, C.A., Bowermann, A.F., Newberry, M., Békés, F., Larroque, O., Morell, M.K. 2008. Suppression of gliadins by RNAi apters grain protein composition and dough functionality. In: Panozzo, J.F., Black, C.K. (eds), Proc. 58th Austr. Cereal Conf. RACI, Melbourne, Australia, pp. 23–29.Google Scholar
  80. Howitt, C.A. 2010. Identification of grain variety and quality type. In: Wrigley, C.W., Batey, I.L., Cereal Grains, Assessing and Managing Quality. CRC Press, Boca Raton, USA, pp. 311–341.CrossRefGoogle Scholar
  81. Islam, S., Ma, W., Yan, G., Békés, F., Appels, R. 2011. Modifying processing and health attributes of wheat bread through changes in composition, genetics and breeding. In: Cauvain, S.P. (ed.), Bread Making. Improving Quality. 2nd Edition. CRC Press, Boston, New York, USA (in press).Google Scholar
  82. Jin, J., Yan, B., Pena, R.J., Xia, X., Morgounov, A., Han, L.M., Zhang, Y., He, Z.H. 2011. Molecular detection of high- and low-molecular-weight glutenin subunit genes in common wheat cultivars from 20 countries using allele-specific markers. Crop and Pasture Sci. 62:746–754.CrossRefGoogle Scholar
  83. Jones, H.D. 2005. Wheat transformation: Current technology and applications to grain development and composition. J. Cereal Sci. 41:137–147.CrossRefGoogle Scholar
  84. Joye, I.J., Lagrain, B., Delcour, J.A. 2009a. Endogenous redox agents and enzymes that affect protein network formation during breadmaking — A review. J. Cereal Sci. 50:1–10.CrossRefGoogle Scholar
  85. Joye, I.J., Lagrain, B., Delcour, J.A. 2009b. Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking — A review. J. Cereal Sci. 50:11–21.CrossRefGoogle Scholar
  86. Kaddur, A.A., Cuq, B. 2011. Dynamic NIR spectroscopy to monitor bread dough mixing: A short review. A. J. Food Technol. 6:173–185.CrossRefGoogle Scholar
  87. Kaur, K., Lukow, O.M., Preston, K.R., Malcolmson, L.J. 2004. How well do early-generation quality tests predict flour performance? Can. J. Plant Sci. 84:71–78.Google Scholar
  88. Kiefer, R., Wieser, H., Henderson, M.H., Graveland, A. 1998. Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale. J. Cereal Sci. 27:53–60.CrossRefGoogle Scholar
  89. Kirjavainen, P.V., Arvola, T., Salminen, S.J., Isolaurie, E. 2002. Aberrant composition of gut microbiota of allergic infants: A target of bifidobacterial therapy at weaning? Gut 51:51–55.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Klockenbring, T., Boese, I.A., Bauer, I.R., Goerlich, R. 2001. Comparative investigations of wheat and spelt cultivars: IgA, IgE, IgG 1 and IgG4 binding characteristics. Food and Agricult. Immunol 13:171–181.CrossRefGoogle Scholar
  91. Kohli, A., Twyman, R.M., Abranches, R., Wegel, E., Stoger, E., Christou, P. 2003. Transgene integration, organization and interaction in plants. Plant Mol. Biol. 52:247–258.CrossRefPubMedGoogle Scholar
  92. Koksel, H., Kahraman, K., Sanal, T., Sivri, D., Dubat, A. 2009. Potential utilization of mixolab for quality evaluation of bread wheat genotypes. Cereal Chem. 86:522–526.CrossRefGoogle Scholar
  93. Konopka, I., Fornal, L., Abramczyk, D., Rothkaehl, J., Rotkiewicz, D. 2004. Statistical evaluation of different technological and rheological tests of Polish wheat varieties for bread volume prediction. Int. J. Food Sci. Technol. 39:11–20.CrossRefGoogle Scholar
  94. Krishnamurthy, K., Giroux, M.J. 2001. Expression of wheat puroindoline genes in transgenic rice confers grain softness. Nat. Biotechnol. 19:162–166.CrossRefPubMedGoogle Scholar
  95. Kushimoto, H., Aold, T. 1985. Masked type-I wheat allergy. Relation to exercise-induced anaphylaxis. Arch. Dermatol. 121:355–360.CrossRefPubMedGoogle Scholar
  96. Langridge, P., Lagudah, E.S., Holton, T.A., Appels, R., Sharp, P.J., Chalmers, K.J. 2001. Trends in genetic and genome analysis in wheat: A review. Aust. J. Agric. Res. 51:1043–1077.CrossRefGoogle Scholar
  97. Lauriere, M., Pecquet, C., Bouchez-Mahiout, I., Snegaroff, J., Bayrou, O., Raison-Peyron, N., Vigan, M. 2006. Hydrolyzed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis 54:283–289.CrossRefPubMedGoogle Scholar
  98. Lee, K.M., Shroyer, J.P., Herrman, T.J., Lingenfelser, J. 2006. Blending hard white wheat to improve grain yield and end-use performances. Crop Sci. 46:1124–1129.CrossRefGoogle Scholar
  99. Liang, Y., Kelemen, A. 2006. Associating phenotypes with molecular events: Recent statistical advances and challenges underpinning microarray experiments. Funct. Integr. Genomics 6:1–13.CrossRefPubMedGoogle Scholar
  100. Liu, L., Wang, A., Appels, R., Ma, J., Xia, X., Lan, P., He, Z., Bekes, F., Yan, Y., Ma, W. 2009. A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. J. Cereal Sci. 50:295–301.CrossRefGoogle Scholar
  101. Liu, Y.K., Békés, F., Gras, P.W., Appels, R., Morell, M. 1999. The low molecular weight glutenin subunit proteins of primitive wheats. IV. Functional properties of products from individual genes. Theor. Appl. Genet. 98:149–155.CrossRefGoogle Scholar
  102. Lukaszewski, A.J., Rybka, K., Korzun, V., Malyshev, S.V., Lapinski, B., Whitkus, R. 2004. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45.CrossRefPubMedGoogle Scholar
  103. Malandain, H. 2005. Transglutaminases: A meeting point for wheat allergy, celiac disease, and food safety. Eur. Ann. of Allergy and Clinical Immunol. 37:397–403.Google Scholar
  104. Mann, G., Diffey, S., Allen, H., Puma, J., Nath, Z., Morell, M.K., Cullis, B., Smith, A. 2008. Comparison of small scale and large scale mixing characteristics: Correlations between small and large scale mixing and extensional characteristics of wheat flour dough. J. Cereal Sci. 47:90–100.CrossRefGoogle Scholar
  105. Marco, C., Gobbetti, M., De Angelis, M., Di Cagno, R., Rizzello, C.G. 2008. Sourdough/lactic acid bacteria. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 267–288.Google Scholar
  106. Metakovsky, E.V., Branlard, G., Graybosch, R.A., Békés, F., Cavanagh, C.R., Wrigley, C.W., Bushuk, W. 2006. The gluten composition of wheat varieties and genotypes. Part I. Gliadin composition table.
  107. Millar, S.J. 2003a. Controlling dough development. In: Cauvain, S.P. (ed.), Breadmaking: Improving Quality. Woodhead Publishing Ltd., London, UK, pp. 401–421.Google Scholar
  108. Millar, S.J. 2003b. The development of near-infrared (NIR) spectroscopy calibrations for the prediction of wheat and flour quality. Home-Grown Cereals Authority (HGCA) Project Report No. 310. Campden and Chorleywood Food Research Association, Chipping Campden, UK.Google Scholar
  109. Millar, S.J., Snape, J., Ward, J., Shewry, P.R., Belton, P., Boniface, K., Summers, R. 2008. Investigating wheat functionality through breeding and end use (FQS 23) HGCA, Project Report No. 429. Campden and Chorleywood Food Research Association, Chipping Campden, UK.Google Scholar
  110. Mills, E.N.C., Madsen, C., Shewry, P.R., Wichers, H.J. 2003. Food allergens of plant origin — their molecular and evolutionary relationships. Trends in Food Sci. Technol. 14:145–156.CrossRefGoogle Scholar
  111. Miralbes, C. 2004. Quality control in the milling industry using near infrared transmittance spectroscopy. Food Chem. 88:621–628.CrossRefGoogle Scholar
  112. Mitea, C., Havenaar, R., Drijfhout, J.W., Edens, L., Dekking, L., Koning, F. 2008. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: Implications for celiac disease. Gut 57:25–32.CrossRefPubMedGoogle Scholar
  113. Mittag, D., Niggemann, I., Sander, I., Reese, E.M., Fiedler, M., Worm, S., Vieths, G., Reese, B. 2004. Immunoglobulin E-reactivity of wheat-allergic subjects (baker’s asthma, food allergy, wheat-dependent, exercise-induced anaphylaxis) to wheat protein fractions with different solubility and digestibility. Mol. Nutr. Food Res. 48:380–389.CrossRefPubMedGoogle Scholar
  114. Morell, M.K., Li, Z., Regina, A., Rahman, S., Hulst, C., Ball, S.G. 2006. Control of starch biosynthesis in vascular plants and algae. In: Plaxton, W.C., McManus, M.T. (eds), Control of Primary Metabolism in Plants. Annual Plant Reviews. Vol. 22. Blackwell Publishing, Oxford, UK, pp. 258–289.CrossRefGoogle Scholar
  115. Morris, C.F., Raykowski, J.A. 1993. WAS: Computer software for wheat quality data management. Agron. J. 85:1257–1261.CrossRefGoogle Scholar
  116. Morris, C.F., Raykowski, J.A. 1994. A computer-aided approach to the evaluation of wheat grain and flour quality. Comput. Electron. Agr. 11:229–237.CrossRefGoogle Scholar
  117. Morup, I.K., Olesen, E.S. 1976. New method for prediction of protein value from essential amino acid patterns. Nutr. Rep. Int. 13:355–365.Google Scholar
  118. Muir, J.G., Rose, R., Rosella, O., Liels, K., Barrett, J., Shepherd, S.J., Gibson, P.R. 2009. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by HPLC. J. Agric. Food Chem. 57:554–565.CrossRefPubMedGoogle Scholar
  119. Muir, J.G., Shepherd, S., Rosella, O.J., Rose, R., Barrett, J., Gibson, P.R. 2007. Fructan and free fructose content of common Australian vegetables and fruits. J. Agric. Food Chem. 55:6619–6627.CrossRefPubMedGoogle Scholar
  120. Nakamura, A., Tanabe, S., Watanabe, J., Makini, T. 2005. Primary screening of relatively less allergenic wheat varieties. J. Nutr. Sci. Vitaminol. 51:204–206.CrossRefPubMedGoogle Scholar
  121. Németh, C., Fereeman, J., Jones, H.D., Sparks, C., Pellny, T.K., Wilkinson, M.D., Dunwell, J., Andersson, A.A.M., Åman, P., Guillon, F., Saulnier, L., Mitchell, R.A.C., Shewry, P.R. 2010. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-b-d-glucan in endosperm of wheat. Plant Physiol. 152:1209–1218.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Nolte, L.L., Youngs, V.L., Crawford, R.D., Kunerth, W.H. 1985. Computer program evaluation of durum and hard red spring wheat. Cereal Foods World 30:227–229.Google Scholar
  123. O’Brien, L., Ronalds, J.A. 1985. Yield and quality interrelationships amongst random F3 lines and their implications for wheat breeding. Austr. J. Agric. Res. 28:5–9.CrossRefGoogle Scholar
  124. Ohm, J.B., Chung, O.K. 1999. Gluten, pasting, and mixograph parameters of hard winter wheat flours in relation to breadmaking. Cereal Chem. 76:606–613.CrossRefGoogle Scholar
  125. Ohm, J.B., Ross, A.S., Ong, Y.L., Peterson, C.J. 2006. Using multivariate techniques to predict wheat flour dough and noodle characteristics from SE-HPLC and RVA data. Cereal Chem. 83:1–9.CrossRefGoogle Scholar
  126. Osborne, B.G. 1984. Investigations into the use of near-infrared reflectance spectroscopy for the quality assessment of wheat with respect to its potential for bread baking. J. Sci. Food Agric. 35:106–110.CrossRefGoogle Scholar
  127. Oszvald, M., Balázs, G., Tömösközi, S., Békés, F., Tamás, L. 2011. Comparative study of the effect of incorporated individual wheat storage proteins on mixing properties of rice and wheat dough. J. Agric. Food Chem. 59:9664–9672.CrossRefPubMedGoogle Scholar
  128. Oszvald, M., Tömösközi, S., Tamás, L., Békés, F. 2007. Successful transformation of HMW glutenin subunit genes into rice. Cereal Res. Commun. 35:1543–1549.CrossRefGoogle Scholar
  129. Payne, P.I. 1987. Genetics of wheat storage proteins and effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 38:141–153.CrossRefGoogle Scholar
  130. Payne, P.I., Nightingale, M.A., Krattiger, A.F., Holt, L.M. 1987. The relationships between HMW glutenin subunit composition and the bread-making quality of British-grown wheat-varieties. J. Sci. Food Agric. 40:51–65.CrossRefGoogle Scholar
  131. Poole, R., Barker, G., Wilson, I.D., Coghill, J.A., Edwards, K.J. 2007. Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat. Funct. Integr. Genomics 7:207–219CrossRefPubMedPubMedCentralGoogle Scholar
  132. Primo-Martín, C., Martínez-Anaya, M.A. 2003. Influence of pentosanase and oxidases on water-extractable pentosans during a straight breadmaking process. J. Food Sci. 68:31–41.CrossRefGoogle Scholar
  133. Pyler, E.J., Gorton, L.A. 2008. Baking Science and Technology, Vols I and II, 4th Edition. Sosland Publishing Co., Kansas City, USA.Google Scholar
  134. Rahman, S., Bird, A., Regina, A., Zhongyi Li, Z., Ral, J.P., McMaugh, F., Topping, D., Morell, M. 2007. Resistant starch in cereals: Exploiting genetic engineering and genetic variation. J. Cereal Sci. 46:251–260.CrossRefGoogle Scholar
  135. Rakszegi, M., Békés, F., Láng, L., Tamás, L., Shewry, P.R., Bedõ, Z. 2005. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J. Cereal Sci. 42:15–23.CrossRefGoogle Scholar
  136. Rath, C.R., Gras, P.W., Wrigley, C.W., Walker, C.E. 1990. Evaluation of dough properties from two grams of flour using the Mixograph principle. Cereal Foods World 35:572–574.Google Scholar
  137. Rath, C.R., Gras, P.W., Zhen, Z., Appels, R., Békés, F., Wrigley, C.W. 1994. A prototype extension tester for two-gram dough samples. In: Panozzo, J.F., Downie, P.G. (eds), Proc. 44th RACI Cereal Chem. Div. RACI, Melbourne, Australia, pp. 122–126.Google Scholar
  138. Regina, A., Bird, A.R., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosr-Hashemi, B., Li, Z., Rahmand, S., Morell, M. 2006. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. PNAS 103:3547–3551.CrossRefGoogle Scholar
  139. Regina, A., Bird, A.R., Li, Z., Rahman, S., Mann, G., Chanliaud, E., Berbezy, P., Topping, D., Morell, M.K. 2007. Bioengineering cereal carbohydrates to improve human health. Cereal Food World 52:182–187.Google Scholar
  140. Renzetti, S., Dal Bello, F., Arendt, E.K. 2008. Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J. Cereal Sci. 48:33–45.CrossRefGoogle Scholar
  141. Roberfroid, M.B., van Loo, J., Gibson, G.R. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128:11–19.CrossRefGoogle Scholar
  142. Rooke, L., Békés, F., Fido, R., Barro, F., Gras, P., Tatham, A.S., Barcelo, P., Lazzeri, P., Shewry, P.R. 1999. Over-expression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci. 30:115–120.CrossRefGoogle Scholar
  143. Rooke, L., Steele, S.H., Barcelo, P., Shewry, P.R., Lazzeri, P.A. 2003. Transgene inheritance, segregation and expression in bread wheat. Euphytica 129:301–309.CrossRefGoogle Scholar
  144. Rosell, C.C., Marco, C. 2008. Rice. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 81–100.CrossRefGoogle Scholar
  145. Rubenthaler, G.L., Pomeranz, Y. 1987. Near-infrared reflectance spectra of hard red winter wheats varying widely in protein content and breadmaking potential. Cereal Chem. 64:407–411.Google Scholar
  146. Sahrawat, A.K., Becker, D., Lutticke, S., Lorz, H. 2003. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci. 165:1147–1168.CrossRefGoogle Scholar
  147. Sangtong, V., Moran, D., Chikwamba, R., Wang, K., Woodman-Clikeman, W., Long, M., Lee, M., Scott, M. 2002. Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor. Appl. Genet. 105:937–945.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Schoenlechner, R., Siebenhandl, S., Berghofer, R. 2008. Pseudocereals. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 149–190.CrossRefGoogle Scholar
  149. Scholz, E., Prieto, M., Gergely, Sz., Salgo Johansson, E. 2007. Possibilities of using near infrared reflectance/transmittance spectroscopy for determination of polymeric protein in wheat. J. Sci. Food Agric. 87:1523–1532.CrossRefGoogle Scholar
  150. Seeborg, E.F., Barmore, M.A. 1957. A new 5 gram milling quality test and its use in wheat breeding. Cereal Chem. 34:299–303.Google Scholar
  151. Shepherd, S.J., Gibson, P.R. 2006. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective management. J. Am. Diet. Assoc. 106:1631–1639.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Shepherd, J.S., Parker, F.C., Muir, J.G., Gibson, P.R. 2008. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: Randomised placebo-controlled evidence. Clin. Gastroenterol. Hepatol. 6:765–771.CrossRefPubMedGoogle Scholar
  153. Shewry, P.R., Powers, S., Field, J.M., Fido, R.J., Jones, H.D., Arnold, G.M., West, J., Paul, A., Lazzeri, P.A., Barcelo, P., Barro, F., Tatham, A.S., Békés, F., Butow, B., Darlington, H. 2006. Comparative field performance over 3 years and two sites of transgenic wheat lines expressingHMWsubunit transgenes. Theor. Appl. Genet. 113:128–136.CrossRefGoogle Scholar
  154. Shewry, P.R., Baudo, M., Lovegrove, A., Powers, S., Napier, J. A., Ward, L.W., Baker, J.M., Beale, M.H. 2007. Are GM and conventionally bread cereals really different? Trends Food Sci. Technol. 18:201–209.Google Scholar
  155. Shewry, P.R., Poutanen, K. 2007. Foreword to the HEALTHGRAIN special issue. J. Cereal Sci. 46:87.Google Scholar
  156. Shimoni, Y., Blechl, A.E., Anderson, O.D., Galili, G. 1997. A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J. Biol. Chem. 272:15488–15495.CrossRefGoogle Scholar
  157. Shoup, N.H., Pell, K.I., Seeborg, E.F., Barmore, M.A. 1957. A new micro mill for preliminary milling — quality tests of wheat. Cereal Chem. 34:296–298.Google Scholar
  158. Shuey, W.C., Sprick, K.J., Scouten, C.W. 1975. A computerized method for wheat quality evaluation. Cereal Foods World 20:46–48.Google Scholar
  159. Solomon, R.G., Partidge, S., Békés, F., Gras, P.W., Békés, F., Appels, R. 1997. Alleviating the adverse effect of ice-crystal growth in frozen bread doughs. In: Tarr, A.W., Ross, A.S., Wrigley, C.W. (eds), Proc. 47th RACI Conference. RACI, Melbourne, Australia, pp. 235–238.Google Scholar
  160. Spaenij-Dekking, L., Kooy-Winkelaar, Y., van Veelen, P., Wouter, D., Drijfheut, J., Jonker, H., van Soest, L., Smulders, M.M., Bosch, D., Gilissen, L.J.W.J., Koning, F. 2005. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterol. 119:797–806.CrossRefGoogle Scholar
  161. Stathopoulos, C.E. 2008. Dairy-based ingredients. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 217–236.CrossRefGoogle Scholar
  162. Stenman, S.M., Venäläinen, J.I., Lindfors, K., Auriola, S., Mauriala, T., Kaukovirta-Norja, A., Jantunen, A., Laurila, K., Qiao, S.W., Sollid, L.M., Männisto, P.T., Kaukinen, K., Maki, M. 2009. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann. Med. 41:390–400.CrossRefGoogle Scholar
  163. Suchy, J., Lukow, O.M., Ingelin, M.E. 2000. Dough Miro-extensibility method using a 2-g Mixograph and a texture analyser. Cereal Chem. 77:39–43.CrossRefGoogle Scholar
  164. Swanson, C.O., Working, E.B. 1933. Testing the quality of flour by the recording dough mixer. Cereal Chem. 10:1–5.Google Scholar
  165. Szajewska, H., Ruszczynski, M., Radzikowski, A. 2006. Probiotics in the prevention of antibiotic-associated diarrhea in children: A metaanalysis of randomized controlled trials. J. Pediatr. 149:367–372.CrossRefGoogle Scholar
  166. Tamás, C., Kisgyörgy, B., Rakszegi, M., Wilkinson, M.D., Yang, M.S., Láng, L., Tamás, L., Bedõ, Z. 2009. Transgenic approach to improve wheat nutritional quality. Plant Cell Rep. 28:1085–1094.CrossRefGoogle Scholar
  167. Tanner, G.J., Howitt, C.A., Forrester, R.I., Campbell, P.M., Tye-Din, J., Anderson, R.P. 2010. Dissecting the T-cell response to hordeins in coeliac disease can develop barley with reduced immunotoxicity. Alim. Pharm. Ther. 32:1184–1191.CrossRefGoogle Scholar
  168. Tara, K.A., Finney, P.L., Bains, G.S. 1972. Damaged starch and protein contents in relation to water absorption of flours in Indian wheats. Die Stärke 24:342–344.CrossRefGoogle Scholar
  169. Tatham, A.S., Shewry, P.R. 2008. Allergens in wheat and related cereals. Clin. Exp. Allergy 38:1712–1726.PubMedGoogle Scholar
  170. Tömösközi, S., Békés, F., Haraszi, R., Gras, P.W., Varga, J., Salgó, A. 2002. Application of micro Z-arm mixer in wheat research — Effects of protein addition on mixing properties of wheat dough. Periodica Polytechnica 46:11–28.Google Scholar
  171. Tömösközi, S., Kindler, A., Varga, J., Rakszegi, M., Láng, L., Bedõ, Z., Baticz, R., Haraszi, R., Békés, F. 2004. Determination of bread-making quality of wheat flour dough with different macro and micro mixers. In: Lafiandra, D., Masci, S., D’Ovidio, R. (eds), The Gluten Proteins, Proc 8th Gluten Workshop. RS-C, Cambridge, UK, pp. 267–270.CrossRefGoogle Scholar
  172. Tömösközi, S., Nádosi, M., Balázs, G., Cavanagh, C., Morgunov, A., Salgó, A., Békés, F. 2009. Revival of sedimentation value — method development, quality prediction and molecular background. In: Branlard, G. (ed.), Gluten Proteins 2009. Proc. 10th Int. Gluten Workshop. INRA, Clermont-Ferrand, France, pp. 104–108.Google Scholar
  173. Topping, D. 2007. Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 46:220–229.CrossRefGoogle Scholar
  174. Topping, D., Bird, A., Toden, S., Conlon, M., Noake, M., King, R., Mann, G., Li, Z., Morell, M.K. 2007. Resistant starch as a contributor to the health benefits of whole grains. In: Marquart, D.R., Jacobs Jr., G.H., McIntosh, K., Poutanen, M., Reicks, M. (eds), Whole Grains&Health. Blackwell Publishing, Iowa, USA, pp. 219–227.Google Scholar
  175. Tosi, P., D’Ovidio, R., Napier, J.A., Békés, F., Shewry, P.R. 2004. Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor. Appl. Genet. 108:468–476.CrossRefPubMedGoogle Scholar
  176. Tosi, P., Masci, S., Giovangrossi, A., D’Ovidio, R., Békés, F., Larroque, O., Napier, J., Shewry, P.R. 2005. Modification of the low molecular weight (LMW) glutenin composition of transgenic durum wheat: Effects on glutenin polymer size and gluten functionality Mol. Breeding 16:113–126.CrossRefGoogle Scholar
  177. Uthayakumaran, S., Gras, P.W., Stoddard, F.L., Békés, F. 1999. Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem. 76:389–394.CrossRefGoogle Scholar
  178. van Herpen, T., Goryunova, S.V., van der Schoot, S., Mitreva, M., Salentijn, E., Vorst, O., Schenk, M.F., van Veelen, P.A., Koning, F., van Soest, J.M., Vosman, B., Bosch, D., Hamer, R.J., Gilissen, L., Smulders, M. 2006. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Voisey, P.W., Miller, H., Kloek, M. 1969. The Ottawa electronic recording dough mixer. VI. Differences between mixing bowls. Cereal Chem. 46:196–202.Google Scholar
  180. Wan, Y., Poole, R.L., Huttly, A.K., Toscano, R., Feeney, K., Welham, S., Gooding, M.K., Mills, C., Edwards, K.J., Shewry, P.R., Mitchell, R.A.C. 2008. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121, doi: Scholar
  181. Wang, Y., Li, Y., Zhang, L., Gao, X., Miao, Y., Wang, C., Yang, G., Shewry, P.R., He, G. 2010. Expression of the 1Ax1 transgene in an elite Chinese wheat variety and its effect on functional properties. J. Sci. Food Agric. 90:106–111.CrossRefPubMedGoogle Scholar
  182. Ward, J.L., Poutanen, J., Gebruers, K., Pironen, V., Lampi, A.M., Nyistro, O., Annica, M., Andersson, A.M., Boros, D., Rakszegi, M., Bedõ, Z., Shewry, P.R. 2008. The HEALTHGRAIN Cereal Diversity Screen: Concept, results, and prospects. J. Agric. Food Chem. 56:9699–9709.CrossRefPubMedGoogle Scholar
  183. Wesley, I.J., Larroque, O., Osborne, B.G., Azudin, N., Allen, H., Skerritt, J.H. 2001. Measurement of gliadin and glutenin content of flour by NIR spectroscopy. J. Cereal Sci. 34:125–133.CrossRefGoogle Scholar
  184. Wesley, I.J., Larsen, N., Osborne, B.G., Skerritt, J.H. 1998. Non-invasive monitoring of dough mixing by NIR. J. Cereal Sci. 27:61–69.CrossRefGoogle Scholar
  185. Wieser, H. 2008. Detection of gluten. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-free Cereal Products and Beverages. Academic Press, San Diego, USA, pp. 47–80.CrossRefGoogle Scholar
  186. Wrigley, C.W., Békés, F., Cavanagh, C.R., Martinov, S., Bushuk, S. 2006a. The gluten composition of wheat varieties and genotypes. Part III. Composition table for the LMW subunits of glutenin.
  187. Wrigley, C.W., Békés, F., Cavanagh, C.R., Martinov, S., Bushuk, S. 2006b. The gluten composition of wheat varieties and genotypes. Part III. Composition table for the HMW subunits of glutenin.
  188. Wrigley, C.W., Tömösközi, S., Békés, F. 2011. Hungarian-Australian collaborations in flour milling and test milling over 120 Years. Cereal Res. Commun. 39:216–225.CrossRefGoogle Scholar
  189. Zhang, X., Liu D., Yang, W., Liu, K., Sun, J., Guo, X., Li, Y., Wang, D., Ling, D., Zhang, A. 2011. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122:1503–1516.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  1. 1.FBFD Pty LtdBeecroftAustralia

Personalised recommendations