Advertisement

Cereal Research Communications

, Volume 40, Issue 3, pp 373–384 | Cite as

QTL Detection of Internode Length and Its Component Index in Wheat Using Two Related RIL Populations

  • F. Cui
  • J. Li
  • A. M. Ding
  • C. H. Zhao
  • X. F. Li
  • D. S. Feng
  • X. Q. Wang
  • L. Wang
  • H. G. WangEmail author
Article

Abstract

To comprehensively understand the genetic basis of plant height (PH), quantitative trait locus (QTL) analysis for internode lengths, internode component indices and plant height component index (PHCI) were firstly conducted in the present study. Two related F8:9 recombinant inbred line (RIL) populations comprising 485 and 229 lines were used. Two hundred and nine putative additive QTL for the eight traits were identified, 35 of which showed significance in at least three trials. Of these, at least 11 pairwise QTL were common to the two populations. PH components at the QTL level had different effects on PH, confirming our previous multivariate conditional analysis (Cui et al. 2011). Eleven major QTL that showed consistency in expression across environments should be of great value in the genetic improvement of PH in wheat. The results above will enhance the understanding of the genetic basis of PH in wheat.

Keywords

wheat internode length internode component index plant height component index QTL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Börner, A., Schumann, E., Fürste, A., Cöter, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait locus determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  2. Chu, C.G., Xu, S.S., Friesen, T.L., Faris, J.D. 2008. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol. Breed. 22:251–266.CrossRefGoogle Scholar
  3. Cui, F., Li, J., Ding, A.M., Zhao, C.H., Wang, L., Wang, X.Q., Li, S.S., Bao, Y.G., Li, X.F., Feng, D.S., Kong, L.R., Wang, H.G. 2011. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor. Appl. Genet. 122:1517–1536.CrossRefGoogle Scholar
  4. Dunn, G.J., Briggs, K.G. 1989. Variation in culm anatomy among barley genotypes differing in lodging resistance. Can. J. Bot. 67:1838–1843.CrossRefGoogle Scholar
  5. Huang, X.Q., Cöster, H., Ganal, M.W., Röder, M.S. 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106:1379–1389.CrossRefGoogle Scholar
  6. Huang, X.Q., Kempf, H., Ganal, M.W., Röder, M.S. 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theor. Appl. Genet. 109:933–943.CrossRefGoogle Scholar
  7. Huang, X.Q., Cloutier, S., Lycar, L., Radovanovic, N., Humphreys, D.G., Noll, J.S., Somers, D.J., Brown, P.D. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113:753–766.CrossRefGoogle Scholar
  8. Kato, K., Miura, H., Sawada, S. 1999. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor. Appl. Genet. 98:472–477.CrossRefGoogle Scholar
  9. Keller, M., Karutz, Ch., Schmid, J.E., Stamp, P., Winzeler, M., Keller, B., Messmer, M.M. 1999. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor. Appl. Genet. 98:1171–1182.CrossRefGoogle Scholar
  10. Klahr, A., Zimmermann, G., Wenzel, G., Mohler, V. 2007. Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28.CrossRefGoogle Scholar
  11. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Annu. Eugen. 12:172–175.CrossRefGoogle Scholar
  12. Kumar, N., Kulwal, P.L., Balyan, H.S., Gupta, P.K. 2007. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 19:163–177.CrossRefGoogle Scholar
  13. Liu, Z.H., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B., Faris, J.D. 2005. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor. Appl. Genet. 111:782–794.CrossRefGoogle Scholar
  14. Mao, S.L., Wei, Y.M., Cao, W.G., Lan, X.J., Yu, M., Chen, Z.M., Chen, G.Y., Zheng, Y.L. 2010. Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356.CrossRefGoogle Scholar
  15. Marza, F., Bai, G.H., Carver, B.F., Zhou, W.C. 2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor. Appl. Genet. 112:688–698.CrossRefGoogle Scholar
  16. McCartney, C.A., Somers, D.J., Humphreys, D.G., Lukow, O., Ames, N., Noll, J., Cloutier, S., McCallum, B.D. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × “AC Domain’. Genome 48:870–883.CrossRefGoogle Scholar
  17. Peter, H. 2003. The genes of the green revolution. Trends Genet. 19:5–9.CrossRefGoogle Scholar
  18. Pinthus, M.J. 1973. Lodging in wheat, barley and oats: The phenomenon, its causes and preventative measures. Adv. Agron. 25:209–263.CrossRefGoogle Scholar
  19. Sourdille, P., Cadalen, T., Guyomarc’h, H., Snape, J.W., Perretant, M.R., Charmet, G., Boeuf, C., Bernard, S., Bernard, M. 2003. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet. 106:530–538.CrossRefGoogle Scholar
  20. Stanca, A.M., Jenkins, G., Hanson, P.R. 1979. Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. J. Agric. Sci. (Cambridge) 93:440–456.Google Scholar
  21. Tavakoli, H., Mohtasebi, S.S., Jafari, A. 2009. Effects of moisture content, internode position and loading rate on the bending characteristics of barley straw. Res. Agric. Eng. 55:45–51.CrossRefGoogle Scholar
  22. Wang, R.X., Hai, L., Zhang, X.Y., You, G.X., Yan, C.S., Xiao, S.H. 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor. Appl. Genet. 118:313–325.CrossRefGoogle Scholar
  23. Wang, Z.H., Wu, X.S., Ren, Q., Chang, X.P., Li, R.Z., Jing, R.L. 2010. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458.CrossRefGoogle Scholar
  24. Wu, X.S., Wang, Z.H., Chang, X.P., Jing, R.L. 2010. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J. Exp. Bot. 61:2923–2937.CrossRefGoogle Scholar
  25. Zhang, K.P., Tian, J.C., Zhao, L., Wang, S.S. 2008. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J. Genet. Genomics 35:119–127.CrossRefGoogle Scholar
  26. Zhu, J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  • F. Cui
    • 1
    • 2
  • J. Li
    • 1
  • A. M. Ding
    • 1
  • C. H. Zhao
    • 1
  • X. F. Li
    • 1
  • D. S. Feng
    • 1
  • X. Q. Wang
    • 3
  • L. Wang
    • 1
    • 4
  • H. G. Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Taian Subcenter of National Wheat Improvement Center, College of AgronomyShandong Agricultural UniversityTaianChina
  2. 2.Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
  3. 3.Municipal Academy of Agricultural SciencesZao’zhuangChina
  4. 4.Municipal Academy of Agricultural SciencesJi’ningChina

Personalised recommendations