Advertisement

Cereal Research Communications

, Volume 39, Issue 3, pp 365–375 | Cite as

Sequence Polymorphism and Expression Analysis of Genes Encoding Gibberellin 20-oxidase from Dasypyrus villosum

  • P. Cai
  • H. Long
  • J. J. Liang
  • C. P. Wang
  • G. B. Deng
  • Z. F. Pan
  • Z. S. PengEmail author
  • M. Q. YuEmail author
Physiology

Abstract

Based on the known GA20-oxidase (GA20ox) cDNAs of barley and wheat, oligonucleotide primers were designed to isolate GA20ox genes from genomic DNA of Dasypyrum villosum. A total of 19 clones were obtained. Each of them contained an open reading frame encoding a putative 40-KDa protein of 359 amino acid residues. Twenty-one SNPs and 4 InDels were found and could divide the 19 sequences into 2 classes, designated as DvGA20ox-1 and DvGA20ox-2, respectively. Q-PCR analyses showed that both DvGA20ox-1 and DvGA20ox-2 were in leaf blade, leaf sheath, stem, eustipes, root and developing spike. Similar expression levels were found between DvGA20ox-1 and DvGA20ox-2 in three stages. The total expression levels of DvGA20ox-1 and DvGA20ox-2 presented downtrend in leaf blade and ascend in stem, eustipes and developing spike along with the development of plants, respectively. However, they were firstly increased and then decreased in root from seeding stage to heading stage. These results revealed that the gene expression profile of DvGA20ox-1 and DvGA20ox-2 closely related to the growth and development of D. villosum.

Keywords

gibberellin 20-oxidase Dasypyrum villosum wheat gene cloning SNP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aach, H., Bode, H., Robinson, D.G., Graebe, J.E. 1997. ent -Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202:211–219.CrossRefGoogle Scholar
  2. Appleford, N.E., Evans, D.J., Lenton, J.R., Gaskin, P., Croker, S.J., Devos, K.M., Phillips, A.L., Hedden, P. 2006. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582.CrossRefGoogle Scholar
  3. Asahina, M., Iwai, H., Kikuchi, A., Yamaguchi, S., Kamiya, Y., Kamada, H., Satoh, S. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol. 129:201–210.CrossRefGoogle Scholar
  4. Biemelt, S., Tschiersch, H., Sonnewald, U. 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol. 135:254–265.CrossRefGoogle Scholar
  5. Bomke, C., Rojas, M.C., Gong, F., Hedden, P., Tudzynski, B. 2008. Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl. Environ. Microbiol. 74:5325–5339.CrossRefGoogle Scholar
  6. Carrera, E., Jackson, S.D., Prat, S. 1999. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiol. 119:765–774.CrossRefGoogle Scholar
  7. Chakravarti, A. 1998. It’s raining SNPs, hallelujah? Nat. Genet. 19:216–217.CrossRefGoogle Scholar
  8. Chen, R., Siwer, D.L., Bruijn, F.J. 1998. Nodule parenchyma specific expression of the Sesbania rostrata early nodulin gene SrEnod2 is mediated by its 3’untranslated region. Plant Cell. 10:1585–1602.PubMedPubMedCentralGoogle Scholar
  9. Choi, Y.H., Yoshizawa, K., Kobayashi, M., Sakurai, A. 1995. Distribution of endogenous gibberellins invegetative shoots of rice. Plant Cell Physiol. 36:997–1001.CrossRefGoogle Scholar
  10. Coles, J.P., Phillips, A.L., Crocker, S.J., Garca-Lepe, R., Lewis, M.J., Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J. 17:547–556.CrossRefGoogle Scholar
  11. Collins, F.S., Guyer, M.S., Chakravarti, A. 1997. Variations on a theme: cataloging human DNAsequence variation. Science 278:1580–1581.CrossRefGoogle Scholar
  12. Fleet, C.M., Yamaguchi, S., Hanada, A., Kawaide, H., David, C.J., Kamiya, Y., Sun, T.P. 2003. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent -kaurene production but no increase in bioactive gibberellins. Plant Physiol. 132:830–839.CrossRefGoogle Scholar
  13. Garcia-Martinez, J.L., Lopez-Diaz, I., Sanchez-Beltran, M.J., Phillips, A.L., Ward, D.A., Gaskin, P., Hedden, P. 1997. Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol. Biol. 33:1073–1084.CrossRefGoogle Scholar
  14. Hedden, P., Kamiya, Y. 1997. Gibberellin biosynthesis: Enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:431–460.CrossRefGoogle Scholar
  15. Hedden, P., Phillips, A.L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Sci. 5:523–530.CrossRefGoogle Scholar
  16. Helliwell, C.A., Wehster, C.I., Gray, J.C. 1997. Light regulated expression of the pea plastocyanin gene is mediated by elements within the transcribed region of the gene. Plant J. 12:499–506.CrossRefGoogle Scholar
  17. Kaneko, M., Itoh, H., Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? The Plant J. 35:104–115.CrossRefGoogle Scholar
  18. Kang, H.G., Jun, S.H., Kim, J., Kawaide, H., Kamiya, Y., An, G. 1999. Cloning and molecular analysis of a gibberellin 20-oxidasegene expressed specifically in developing seeds of watermelon. Plant Physiol. 121:373–382.CrossRefGoogle Scholar
  19. Liu, C., Yang, Z.J., Jia, J.Q., Li, G.R., Zhou, J. P., Ren, Z.L. 2009. Genomic distribution of a Long Terminal Repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res. Commun. 37:363–372.CrossRefGoogle Scholar
  20. Maniatis, T., Reed, R. 2002. An extensive network of coupling among gene expression machines. Nature 416: 499–506.CrossRefGoogle Scholar
  21. Maquat, L.E., Carmichael, G.G. 2000. Quality control of mRNA function. Cell. 26:173–176.Google Scholar
  22. Nelson, D.R., Schuler, M.A., Paquette, S.M., Werck-Reichhart, D., Bak, S. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135:756–772.CrossRefGoogle Scholar
  23. Olszewski, N., Sun, T.P., Gubler, F. 2002. Gibberellin signalling: Biosynthesis, catabolism and response pathways. Plant Cell (Suppl.) 14:s61–s80.CrossRefGoogle Scholar
  24. Orphanides, G., Reinberg, D. 2002. A unified theory of gene expression. Cell 108:439–451.CrossRefGoogle Scholar
  25. Ozga, J.A., Reinecke, D.M., Ayele, B.T., Ngo, P., Nadeau, C. 2009. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol. 131:1137–1146.CrossRefGoogle Scholar
  26. Pfaffl M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:2002–2007.CrossRefGoogle Scholar
  27. Phillips, A.L., Ward, D.A., Uknes, S., Appleford, N.E.J., Lange, T., Huttly, A.K., Gaskin, P., Graebe, J.E., Hedden, P. 1995. Isolation and expression of 3 Gibberellin20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108:1049–1057.CrossRefGoogle Scholar
  28. Pimenta Lange, M.J., Lange, T. 2006. Gibberellin biosynthesis and the regulation of plant development. Plant Biol. 8:281–290.CrossRefGoogle Scholar
  29. Proudfoot, N.J., Furger, A., Dye, M.J. 2002. Integrating mRNA processing with transcription. Cell 108:501–512.CrossRefGoogle Scholar
  30. Sambrook, J., Russell, D.W., Huang, P.T. 2002. Molecular Cloning: A Laboratory Manual, 3rd ed. Huang, P.T., Wang, J.X., Zhu, H.C., Science Press, Beijing, pp. 463–464.Google Scholar
  31. Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A., Amasino, R.M. 2003. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163.CrossRefGoogle Scholar
  32. Spielmeyer, W., Ellis, M., Robertson, M., Ali, S., Lenton, J.R., Chandler, P.M. 2004. Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor. Appl. Genet. 109:847–855.CrossRefGoogle Scholar
  33. Sponsel, V.M., Hedden, P. 2004. Gibberellin biosynthesis and inactivation. In: Davies, P.J. (ed.), Plant Hormones: Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 63–94.Google Scholar
  34. Wu, J., Kong, X.Y., Gao, L.F., Ren, Z.L., Jia, J.Z. 2009. Isolation and analysis of TaGA20ox2 genes in wheat. Sci. Agri. Sin. 42:3405–3412.Google Scholar
  35. Wu, K., Li, L., Gage, D.A., Zeevaart, J.A. 1996. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 110:547–554.CrossRefGoogle Scholar
  36. Xu, Y.L., Li, L., Wu, K., Peeters, A.J.M., Gage, D.A., Zeevaart, J.A.D. 1995. Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci. Proc. Natl. Acad. Sci. USA 92:6640–6644.CrossRefGoogle Scholar
  37. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59:225–251.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Triticeae Research Institute of Sichuan Agricultural UniversityYaan, SichuanChina
  2. 2.Chengdu Institute of BiologyChinese Academy of SciencesChengdu, SichuanChina
  3. 3.College of Life ScienceChina West Normal UniversityNanchong, SichuanChina

Personalised recommendations