Advertisement

J/Ψ measurement in p+p, d+Au and Au+Au collisions by the PHENIX experiment at RHIC

  • Alexandre Lebedev
  • the PHENIX Collaboration
Article
  • 13 Downloads

Abstract

J/Ψ’s are produced mostly via interactions involving gluons, and are a sensitive probe of the gluon structure function and its modification in nuclei. They are also considered as a leading signal for studying the creation of hot and dense matter in relativistic heavy ion collision. Measurement of J/Ψ production in different colliding systems is important for understanding the nuclear modification factor, and setting a baseline for the study of J/Ψ suppression in heavy ion collisions. In this talk we report the latest results on J/Ψ measurements by the PHENIX experiment at RHIC in p+p; d+Au, and Au+Au collisions at backward, forward, and mid-rapidity. Nuclear effects are studied as a function of transverse momentum, rapidity and centrality.

Keywords

J/Ψ relativistic heavy ion collisions 

PACS

25.75.Dw 

References

  1. 1.
    T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416.CrossRefADSGoogle Scholar
  2. 2.
    M. Bedjidian et al., hep-ph/0311048.Google Scholar
  3. 3.
    L.D. McLerran and R. Venugopalan, Phys. Rev. D 49 (1994) 2233.CrossRefADSGoogle Scholar
  4. 4.
    R. Vogt, Phys. Rev. C 61 (2000) 035203.CrossRefADSGoogle Scholar
  5. 5.
    L. Antoniazzi et al., Phys. Rev. Lett. 70 (1993) 383.CrossRefADSGoogle Scholar
  6. 6.
    D.M. Alde et al., Phys. Rev. Lett. 66 (1991) 133.CrossRefADSGoogle Scholar
  7. 7.
    M.J. Leitch et al., Phys. Rev. Lett. 84 (2000) 3256.CrossRefADSGoogle Scholar
  8. 8.
    B. Alessandro et al., Phys. Lett. B 553 (2003) 167.CrossRefADSGoogle Scholar
  9. 9.
    J. Spengler, J. Phys. G 30 (2004) S871.CrossRefADSGoogle Scholar
  10. 10.
    J. Badier et al., Z. Phys. C 20 (1983) 101.CrossRefADSGoogle Scholar
  11. 11.
    S.S. Adler et al., Phys. Rev. Lett. 92 (2004) 051802.CrossRefADSGoogle Scholar
  12. 12.
    S.S. Adler et al., Phys. Rev. C 69 (2004) 014901.CrossRefADSGoogle Scholar
  13. 13.
    R. Vogt, Phys. Rep. 310 (1999) 197; G.A. Schuler hep-ph/9403387, and references therein.CrossRefADSGoogle Scholar
  14. 14.
    H.D. Sato, Ph.D. Thesis [hep-ph/0305239].Google Scholar
  15. 15.
    M. Beneke and I.Z. Rothstein, Phys. Rev. D 54 (1996) 2005.CrossRefADSGoogle Scholar
  16. 16.
    S.R. Klein and R. Vogt, Phys. Rev. Lett. 91 (2003) 142301.CrossRefADSGoogle Scholar
  17. 17.
    R. Vogt, Phys. Rev. C 71 (2005) 054902 [hep-ph/0411378].CrossRefADSGoogle Scholar
  18. 18.
    B. Kopeliovich, A. Tarasov and J. Hufner, Nucl. Phys. A696 2001 669.CrossRefGoogle Scholar
  19. 19.
    J.K. Yoh et al., Phys. Rev. Lett. 41 (1978) 684.CrossRefADSGoogle Scholar
  20. 20.
    B.B. Back et al., Phys. Rev. Lett. 93 (2004) 082301.CrossRefADSGoogle Scholar
  21. 21.
    R.L. Thews, M. Schroedter and J. Rafelski, Phys. Rev. C 63 (2001) 054905; R.L. Thews, Proc. of Strange Quark Matter 2003.CrossRefADSGoogle Scholar
  22. 22.
    L. Grandchamp and R. Rapp, Nucl. Phys. A709 (2002) 415; L. Grandchamp and R. Rapp, Phys. Lett. B 523 (2001) 60.CrossRefGoogle Scholar
  23. 23.
    A. Andronic et al., Phys. Lett. B 571 (2003) 36 [nucl-th/0303036].CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2006

Authors and Affiliations

  • Alexandre Lebedev
    • 1
  • the PHENIX Collaboration
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations