Skip to main content
Log in

Directed and elliptic flow in 197Au+197Au at intermediate energies

  • Published:
Acta Physica Hungarica A) Heavy Ion Physics

Abstract

Directed and elliptic flow for the 197Au+197Au system at incident energies between 40 and 150 MeV per nucleon has been measured using the INDRA 4π multi-detector. For semi-central collisions, the excitation function of elliptic flow shows a transition from in-plane to out-of-plane emission at around 100 MeV per nucleon. The directed flow changes sign at a bombarding energy between 50 and 60 MeV per nucleon and remains negative at lower energies. Molecular dynamics calculations (CHIMERA) indicate sensitivity of the global squeeze-out transition on the σ NN and demonstrate the importance of angular momentum conservation in transport codes at low energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974.

    Article  ADS  Google Scholar 

  2. P. Danielewicz et al., Science 298 (2002) 1592.

    Article  ADS  Google Scholar 

  3. W. Reisdorf and H.G. Ritter, Ann. Rev. Nucl. Part. Sci. 47 (1997) 663.

    Article  ADS  Google Scholar 

  4. N. Herrmann et al., Ann. Rev. Nucl. Part. Sci. 49 (1999) 581.

    Article  ADS  Google Scholar 

  5. G.F. Bertsch, W.G. Lynch and M.B. Tsang, Phys. Lett. B 189 (1987) 384.

    Article  ADS  Google Scholar 

  6. D.J. Magestro et al., Phys. Rev. C 61 (2000) 021602.

    Article  ADS  Google Scholar 

  7. A. Andronic et al., Phys. Rev. C 64 (2001) 041604.

    Article  ADS  Google Scholar 

  8. A. Andronic et al., Phys. Lett. B 612 (2005) 173.

    Article  ADS  Google Scholar 

  9. M.B. Tsang et al., Phys. Lett. B 148 (1984) 265.

    Article  MathSciNet  ADS  Google Scholar 

  10. W.K. Wilson et al., Phys. Rev. C 41 (1990) 1881.

    Article  ADS  Google Scholar 

  11. R.A. Lacey et al., Phys. Rev. Lett. 70 (1993) 1224.

    Article  ADS  Google Scholar 

  12. A. Andronic et al., Nucl. Phys. A 679 (2001) 765.

    Article  ADS  Google Scholar 

  13. C. Pinkenburg et al., Phys. Rev. Lett. 83 (1999) 1295.

    Article  ADS  Google Scholar 

  14. J. Lukasik et al., Phys. Lett. B 608 (2005) 223.

    Article  ADS  Google Scholar 

  15. J. Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 357 (1995) 418.

    Article  ADS  Google Scholar 

  16. J. Lukasik et al., Phys. Rev. C 66 (2002) 064606.

    Article  ADS  Google Scholar 

  17. A. Le Fèvre et al., Nucl. Phys. A 735 (2004) 219.

    Article  ADS  Google Scholar 

  18. C. Cavata et al., Phys. Rev. C 42 (1990) 1760.

    Article  ADS  Google Scholar 

  19. M. Gyulassy et al., Phys. Lett. B 110 (1982) 185.

    Article  ADS  Google Scholar 

  20. P. Danielewicz and M. Gyulassy, Phys. Lett. 129B (1983) 283.

    ADS  Google Scholar 

  21. H.H. Gutbrod et al., Phys. Rev. C 42 (1990) 640.

    Article  ADS  Google Scholar 

  22. J. Lukasik and Z. Majka, Acta Phys. Pol. B24 (1993) 1959.

    Google Scholar 

  23. K. Chen et al., Phys. Rev. 166 (1968) 949.

    Article  ADS  Google Scholar 

  24. G.F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 189.

    Article  ADS  Google Scholar 

  25. H. Sigurgeirsson et al., J. Comput. Phys. 172 (2001) 766.

    Article  MATH  ADS  Google Scholar 

  26. C. Gale and S. Das Gupta, Phys. Rev. C 42 (1990) 1577.

    Article  ADS  Google Scholar 

  27. S. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665.

    Article  Google Scholar 

  28. J.-Y. Ollitrault, nucl-ex/9711003.

  29. A.M. Poskanzer and S.A. Voloshin, Phys. Rev. C 58 (1998) 1671.

    Article  ADS  Google Scholar 

  30. N. Borghini et al., Phys. Rev. C 66 (2002) 014901.

    Article  ADS  Google Scholar 

  31. P. Danielewicz and G. Odyniec, Phys. Lett. B 157 (1985) 146.

    Article  ADS  Google Scholar 

  32. W.K. Wilson et al., Phys. Rev. C 45 (1992) 738.

    Article  ADS  Google Scholar 

  33. C.A. Ogilvie et al., Phys. Rev. C 40 (1989) 2592.

    Article  ADS  Google Scholar 

  34. D. Cussol et al., Phys. Rev. C 65 (2002) 044604.

    Article  ADS  Google Scholar 

  35. C.A. Ogilvie et al., Phys. Rev. C 40 (1989) 654.

    Article  ADS  Google Scholar 

  36. J. Lukasik et al., Phys. Lett. B 566 (2003) 76.

    Article  ADS  Google Scholar 

  37. S. Soff et al., Phys. Rev. C 51 (1995) 3320.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Łukasik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łukasik, J., Auger, G., Begemann-Blaich, M.L. et al. Directed and elliptic flow in 197Au+197Au at intermediate energies. Acta Phys. Hung. A 25, 229–239 (2006). https://doi.org/10.1556/APH.25.2006.2-4.11

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.25.2006.2-4.11

Keywords

PACS

Navigation