Identification of New SSR Markers Linked to Leaf Chlorophyll Content, Flag Leaf Senescence and Cell Membrane Stability Traits in Wheat under Water Stressed Condition


Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.


  1. 1.

    Altinkut, A., Gozukirmizi, N. (2003) Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. Mol. Biotechnol. 196, 97–106.

    Article  Google Scholar 

  2. 2.

    Barakat, M. N., Al-Doss, A. A., Moustafa, K. A., Ahmed, E. I., Elshafei, A. A. (2010) Morphological and molecular characterization of Saudi wheat genotypes under drought stress. J. Food Agricult. & Environ. 196, 220–228.

    Google Scholar 

  3. 3.

    Barakat, M. N., Wahba, L. E., Milad, S. I. (2013) Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. Biol. Plant. 196, 79–84.

    Article  Google Scholar 

  4. 4.

    Baum, M., Grando, S., Backes, G., Jahoor A., Sabbagh, A., Ceccarelli, S. (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’×H. spontaneum 41-1. Theor. Appl. Genet. 196, 1215–1225.

    Article  Google Scholar 

  5. 5.

    Blum, A., Ebercon, A. (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 196, 43–47.

    Article  Google Scholar 

  6. 6.

    Cao, W. D., Jia, J. Z., Jin, J. Y. (2004) Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr. Ferti. Sci. 196, 473–478.

    Google Scholar 

  7. 7.

    Ciuca, M., Petcu, E. (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom. Agricult. Res. 196, 21–24.

    Google Scholar 

  8. 8.

    Courtois, B., McLaren, G., Sinha, P. K., Prasad, K., Yadav, R., Shen, L. (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol. Breeding 196, 55–66.

    Article  Google Scholar 

  9. 9.

    Dubcovsky, J., Luo, M. C., Dvorák, J. (1995) Linkage relationships among stress-induced genes in wheat. Theor. Appl. Genet. 196, 795–801.

    Article  Google Scholar 

  10. 10.

    Dwyer, L. M., Tollenaar M., Houwing, L. (1991) A nondestructive method to monitor leaf greenness in cron. Can. J. Plant Sci. 196, 505–509.

    Article  Google Scholar 

  11. 11.

    Elshafei, A. A., Saleh, M., Al-Doss, A. A., Moustafa, K. A., Al-Qurainy F. H., Barakat, M. N. (2013) Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stressed condition. Aust. J. Crop Sci. 196, 887–893.

    Google Scholar 

  12. 12.

    Golabadi, M., Arzani, A., Maibody, S. M., Tabatabaei B. S., Mohammadi, S. A. (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum heat. Euphytica 196, 207–221.

    Article  Google Scholar 

  13. 13.

    Grando, S., Baum, M., Ceccarelli, S., Goodchild, A., El-Haramein., F. J, Backes, G. (2005) QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare×H. spon-taneum cross in a Mediterranean environment. Theor. Appli. Genet. 196, 688–695.

    Article  Google Scholar 

  14. 14.

    Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., Ceccarelli, S. (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 196, 203–214.

    Article  Google Scholar 

  15. 15.

    Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M., Leroy, P. (2002) Genetic mapping o. 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 196, 413–422.

    Article  Google Scholar 

  16. 16.

    McWilliam, J. (1989) The dimensions of drought. In: Baker, F. (ed.) Drought Resistance in Cereals. CAB International, Wallingford, UK, pp. 1–11.

    Google Scholar 

  17. 17.

    Meer, J. M., Robert, H. C., Kenneth, F. M. (2002) Map Manager versio. 0.22.">

    Google Scholar 

  18. 18.

    Michelmore, R. W., Paran, I., Kesseli, R. V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 196, 9828–9832.

    Article  Google Scholar 

  19. 19.

    Nelson, J. C. (1997) QGENE: software for marker-based genomic analysis and breeding. Mol. Breed 196, 239–245.

    Article  Google Scholar 

  20. 20.

    Peng, S., Garcia, F. V., Laza, R. C., Cassman, K. G. (1993) Adjust for specific leaf weight improves chlorophyll meter’s estimates of rice leaf nitrogen concentration. Agron. J. 196, 987–990.

    Article  Google Scholar 

  21. 21.

    Quarrie, S., Dodig, D., Pekiç, S., Kirby, J., Kobiljski, B. (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bul. J. Plant. Physiol. Special Issue (Proc. Eur. Workshop Environ. Stress and Sustainable Agricult., Varna, Bulgaria) pp. 83–95.

    Google Scholar 

  22. 22.

    Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., Ganal, M. W. (1998) A microsatellite map of wheat. Genetics 196, 2007–2023.

    Google Scholar 

  23. 23.

    Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W. (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 196, 8014–8018.

    Article  Google Scholar 

  24. 24.

    Saleh, M. S., Al-Doss, A. A., Elshafei, A. A., Moustafa, K. A., Al-Qurainy, F. H., Barakat, M. N. (2013) Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol. Plant. 196, 64–70.

    Google Scholar 

  25. 25.

    SAS. 2007. SAS/STAT. Guide for personal computers. Versio. 9 ed. SAS end. SAS Institute, Cary, NC, USA.

    Google Scholar 

  26. 26.

    Shen, L., Courtois, B., McNally, K. L., Robin, S., Li, Z. (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Genet. 196, 75–83.

    Article  Google Scholar 

  27. 27.

    Song, Q., Shi, J., Singh, S., Fickus, E., Costa, J., Lewis, J., Cregan, P. (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 196, 550–560.

    Article  Google Scholar 

  28. 28.

    Takeda, S., Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 196, 444–457.

    Article  Google Scholar 

  29. 29.

    Tuberosa, R., Salvi, S. (2006) “Genomics-based approaches to improve drought tolerance of crops.” Trends Plant Sci. 196, 405–412.

    Article  Google Scholar 

  30. 30.

    Verma, V., Foulkes, M., Worland, A., Sylvester-Bradley, R., Caligari, P., Snape, J. (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 196, 255–263.

    Article  Google Scholar 

  31. 31.

    Visser, B. (1994) Technical aspects of drought tolerance. Biotechnol. Dev. Monitor 196. 5.

    Google Scholar 

  32. 32.

    Yang, D. L., Jing, R. L., Chang, X. P., Li, W. (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J. Integr. Plant Biol. 196, 646–654.

    Article  Google Scholar 

  33. 33.

    Zeng, Z. B. (1994) Precision mapping of quantitative trait loci. Genetics 196, 1457–1468.

    Google Scholar 

  34. 34.

    Żur, I., Krzewska, M., Dubas, E., Golebiowska-Pikania, G., Janowiak, F., Stojalowski, S. (2012) Molecular mapping of loci associated with abscisic acid accumulation in triticale (×Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. Plant Growth Reg. 196, 483–492.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed N. Barakat.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barakat, M.N., Saleh, M., Al-Doss, A.A. et al. Identification of New SSR Markers Linked to Leaf Chlorophyll Content, Flag Leaf Senescence and Cell Membrane Stability Traits in Wheat under Water Stressed Condition. BIOLOGIA FUTURA 66, 93–102 (2015).

Download citation


  • Physiological traits
  • QTL
  • SSR markers
  • Triticum aestivum