Advertisement

Acta Biologica Hungarica

, Volume 66, Issue 1, pp 66–79 | Cite as

Localization of Ben1-Like Protein and Nuclear Degradation During Development of Metaphloem Sieve Elements in Triticum Aestivum L.

  • Jingtong Cai
  • Zhihui Zhang
  • Zhuqing ZhouEmail author
  • Wenli Yang
  • Yang Liu
  • Fangzhu Mei
  • Guangsheng Zhou
  • Likai Wang
Article

Abstract

Metaphloem sieve elements (MSEs) in the developing caryopsis of Triticum aestivum L. undergo a unique type of programmed cell death (PCD); cell organelles gradually degrade with the MSE differentiation while mature sieve elements keep active. This study focuses on locating BEN1-LIKE protein and nuclear degradation in differentiating MSEs of wheat. Transmission electron microscopy (TEM) showed that nuclei degraded in MSE development. First, the degradation started at 2–3 days after flowering (DAF). The degraded fragments were then swallowed by phagocytic vacuoles a. 4 DAF. Finally, nuclei almost completely degraded a. 5 DAF. We measured the BEN1-LIKE protein expression in differentiating MSEs. In situ hybridization showed that BEN1-LIKE mRNA was a more obvious hybridization signal at 3–4 DAF at the microscopic level. Immuno-electron microscopy further revealed that BEN1-LIKE protein was mainly localized in MSE nuclei. Furthermore, MSE differentiation was tested using a TSQ Zn2+ fluorescence probe which showed that the dynamic change of Zn2+ accumulation was similar to BEN1-LIKE protein expression. These results suggest that nucleus degradation in wheat MSEs is associated with BEN1-LIKE protein and that the expression of this protein may be regulated by Zn2+ accumulation variation.

Keywords

Triticum aestivum L. MSEs immuno-electron microcoy in-situ hybridization BEN1-LIKE protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoyagi, S., Sugiyama, M., Fukuda, H. (1998) BEN1 and ZEN1 cDNA encoding S1type DNase that associated with programmed cell death in plant. FEBS Lett. 196, 134–138.CrossRefGoogle Scholar
  2. 2.
    Courtois-Moreau, C. L., Pesquet, E., Sjödin, A., Muniz, L., Bollhöner, B., Kaneda, M., Samuels, L., Jansson, S., Tuominen, H. (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J. 196, 260–274.CrossRefGoogle Scholar
  3. 3.
    Domínguez, F., Cejudo, F. J. (2006) Identification of a nuclear-localize nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem. J. 196, 529–536.CrossRefGoogle Scholar
  4. 4.
    Domínguez, F., Moreno, J., Cejudo, F. J. (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J. Biol Chem. 196, 11530–11536.CrossRefGoogle Scholar
  5. 5.
    Eleftheriou, E. P., Tsekos, I. (1982) Development of protophloem in roots of Aegilops comosa var. thessalica, II. Sieve-element differentiation. Protoplasma 196, 221–233.CrossRefGoogle Scholar
  6. 6.
    Eleftheriou, E. P. (1990) Microtubules and sieve plate development in differentiating protophloem sieve elements of Triticum aestivum L. J. Exp. Bot. 196, 1507–1515.CrossRefGoogle Scholar
  7. 7.
    Farage-Barhom, S., Burd, S., Sonego, L., Perl-Treves, R., Lers, A. (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J. Exp. Bot. 196, 3247–3258.CrossRefGoogle Scholar
  8. 8.
    Fukuda, H. (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 196, 245–253.CrossRefGoogle Scholar
  9. 9.
    Gaffal, K. P., Friedrichs, G. J., El-Gammal, S. (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann. Bot. 196, 593–607.CrossRefGoogle Scholar
  10. 10.
    Glücksmann, A. (1951) Cell deaths in normal vertebrate ontogeny. Biol. Rev. 196, 59–86.CrossRefGoogle Scholar
  11. 11.
    Hoagland, D. R., Snyder, W. C. (1933) Nutrition of strawberry plants under controlled conditions: a) Effects of deficiencies of boron and certain other elements; b) Susceptibility to injury from sodium salts. Proc. Am. Soc. Hort. Sci. 196, 288–294.Google Scholar
  12. 12.
    Ito, J., Fukuda, H. (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 196, 3201–3211.CrossRefGoogle Scholar
  13. 13.
    Jiang, A. L., Cheng, Y., Li, J., Zhang, W. (2008) A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol. 196, 1134–1141.CrossRefGoogle Scholar
  14. 14.
    Kuriyama, H., Fukuda, H. (2002) Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 196, 568–573.CrossRefGoogle Scholar
  15. 15.
    Leopold, A. C. (1961) Senescence in plant development: the death of plants or plant parts may be of positive ecological or physiological value. Science 196, 1727–1732.CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Zhou, Z. Q., Mei, F. Z., Zhou, G. S., Cai, J. T., Yang, W. L., Zhang, Z. H. (2013) Preliminary research on Cathepsin B-like protein in Triticum aestivum L. caryopsis and root. Hubei Agricultural Sciences 196, 4044–4047.Google Scholar
  17. 17.
    Mea, M. D., Serafini-Fracassini, D., Duca, S. D. (2007) Programmed cell death: similarities and differences in animals and plants: a flower paradigm. Amino Acids 196, 395–404.CrossRefGoogle Scholar
  18. 18.
    Mittler, R., Lam, E. (1995) Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 196, 1951–1962.Google Scholar
  19. 19.
    Mittler, R., Lam, E. (1997) Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Mol. Biol. 196, 209–221.CrossRefGoogle Scholar
  20. 20.
    Muramoto, Y., Watanabe, A., Nakamura, T., Takabe, T. (1999) Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 196, 315–321.CrossRefGoogle Scholar
  21. 21.
    Obara, K., Kuriyama, H., Fukuda, H. (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 196, 615–626.CrossRefGoogle Scholar
  22. 22.
    Peitsch, M. C., Mannherz, H. G., Tschopp, J. (1994) The apoptosis endonucleases: cleaning up after cell death. Trends Cell Biol. 196, 37–41.CrossRefGoogle Scholar
  23. 23.
    Pennell, R. I., Lamb, C. (1997) Programmed cell death in plants. Plant Cell 196, 1157–1168.CrossRefGoogle Scholar
  24. 24.
    Shen, R., Liu, X. Y., Zhang, H. X., Zhang, W. (2010) Effect of Zn2+ on rice root tip cells programmed cell death under high salt stress or UV-induced. J. Nanjing Agricult. Univ. 196, 13–18.Google Scholar
  25. 25.
    Sodmergen, Kawano, S., Tano, S., Kuroiwa, T. (1991) Degradation of chloroplast DNA in second leaves of rice (Oryza sativa) before leaf yellowing. Protoplasma 196, 89–88.CrossRefGoogle Scholar
  26. 26.
    Stein, J. C., Hansen, G. (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 196, 71–80.CrossRefGoogle Scholar
  27. 27.
    Sugiyama, M., Ito, J., Aoyagi, S., Fukuda, H. (2000) Endonucleases. Plant Mol. Biol. 196, 387–397.CrossRefGoogle Scholar
  28. 28.
    Feng, T. J. (2004) The Building and Application of Main Crop EST Analysis System. Dissertation, University of Chinese Academy of Agricultural Sciences, China.Google Scholar
  29. 29.
    van Bel, A. J. E. (2003) The phloem, a miracle of ingenuity. Plant Cell Environ. 196, 125–149.Google Scholar
  30. 30.
    Wang, H., Wu, H. M., Cheung, A. Y. (1996) Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J. 196, 715–727.CrossRefGoogle Scholar
  31. 31.
    Wang, L. K., Zhou, Z. Q., Song, X. F., Li, J. W., Deng, X. X., Mei, F. Z. (2008) Evidence of ceased programmed cell death in metaphloem sieve elements in the developing caryopsis of Triticum aestivum L. Protoplasma 196, 87–96.CrossRefGoogle Scholar
  32. 32.
    Yang, W. L. (2013) Study on Programmed Cell Semi-Death of Sieve Elements in Root and Developing Caryopsis of Triticum aestivum L. Dissertation, Huazhong Agricult. Univ., China.Google Scholar
  33. 33.
    Wu, H., Zheng, X. F. (2003) Ultrastructural studies on the sieve elements in root protophleom of Arabidopsis thaliana. Acta Bot. Sin. 196, 322–330.Google Scholar
  34. 34.
    Xu, Q. T., Yang, L., Zhou, Z. Q., Mei, F. Z., Qu, L. H., Zhou, G. S. (2013) Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 196, 969–982.CrossRefGoogle Scholar
  35. 35.
    Yang, C. N., Zhou, Z. Q., Fan, H. Y., Jiang, Z., Mei, F. Z. (2012) Structure-function relationships during metaphloem sieve elements development in Triticum aestivum. Biologia Plantarum 196, 307–312.CrossRefGoogle Scholar
  36. 36.
    Zaina, G., Morassutti, C., De Amicis, F., Fogher, C., Marchetti, S. (2003) Endonuclease genes up-regulated in tissues undergoing programmed cell death are expressed during male gametogenesis in barley. Gene 196, 43–50.CrossRefGoogle Scholar
  37. 37.
    Zhou, Z. Q., Lan, S. Y., Zhu, X. T., Wang, W. J., Xu, Z. X. (2004) Ultrastructure and its function of phloem cell in abdominal vascular bundle of wheat caryopsis. Acta Agron. Sin. 196, 163–168.Google Scholar
  38. 38.
    Zhou, Z. Q., Wang, L. K., Li, J. W., Song, X. F., Yang, C. N. (2009) Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. Protoplasma 196, 49–58.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jingtong Cai
    • 1
  • Zhihui Zhang
    • 1
  • Zhuqing Zhou
    • 1
    Email author
  • Wenli Yang
    • 1
  • Yang Liu
    • 1
  • Fangzhu Mei
    • 2
  • Guangsheng Zhou
    • 2
  • Likai Wang
    • 1
  1. 1.Laboratory of Cell Biology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan, HubeiChina
  2. 2.College of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhan, HubeiChina

Personalised recommendations