Localization of Ben1-Like Protein and Nuclear Degradation During Development of Metaphloem Sieve Elements in Triticum Aestivum L.


Metaphloem sieve elements (MSEs) in the developing caryopsis of Triticum aestivum L. undergo a unique type of programmed cell death (PCD); cell organelles gradually degrade with the MSE differentiation while mature sieve elements keep active. This study focuses on locating BEN1-LIKE protein and nuclear degradation in differentiating MSEs of wheat. Transmission electron microscopy (TEM) showed that nuclei degraded in MSE development. First, the degradation started at 2–3 days after flowering (DAF). The degraded fragments were then swallowed by phagocytic vacuoles a. 4 DAF. Finally, nuclei almost completely degraded a. 5 DAF. We measured the BEN1-LIKE protein expression in differentiating MSEs. In situ hybridization showed that BEN1-LIKE mRNA was a more obvious hybridization signal at 3–4 DAF at the microscopic level. Immuno-electron microscopy further revealed that BEN1-LIKE protein was mainly localized in MSE nuclei. Furthermore, MSE differentiation was tested using a TSQ Zn2+ fluorescence probe which showed that the dynamic change of Zn2+ accumulation was similar to BEN1-LIKE protein expression. These results suggest that nucleus degradation in wheat MSEs is associated with BEN1-LIKE protein and that the expression of this protein may be regulated by Zn2+ accumulation variation.


  1. 1.

    Aoyagi, S., Sugiyama, M., Fukuda, H. (1998) BEN1 and ZEN1 cDNA encoding S1type DNase that associated with programmed cell death in plant. FEBS Lett. 196, 134–138.

    Article  Google Scholar 

  2. 2.

    Courtois-Moreau, C. L., Pesquet, E., Sjödin, A., Muniz, L., Bollhöner, B., Kaneda, M., Samuels, L., Jansson, S., Tuominen, H. (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J. 196, 260–274.

    Article  Google Scholar 

  3. 3.

    Domínguez, F., Cejudo, F. J. (2006) Identification of a nuclear-localize nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem. J. 196, 529–536.

    Article  Google Scholar 

  4. 4.

    Domínguez, F., Moreno, J., Cejudo, F. J. (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J. Biol Chem. 196, 11530–11536.

    Article  Google Scholar 

  5. 5.

    Eleftheriou, E. P., Tsekos, I. (1982) Development of protophloem in roots of Aegilops comosa var. thessalica, II. Sieve-element differentiation. Protoplasma 196, 221–233.

    Article  Google Scholar 

  6. 6.

    Eleftheriou, E. P. (1990) Microtubules and sieve plate development in differentiating protophloem sieve elements of Triticum aestivum L. J. Exp. Bot. 196, 1507–1515.

    Article  Google Scholar 

  7. 7.

    Farage-Barhom, S., Burd, S., Sonego, L., Perl-Treves, R., Lers, A. (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J. Exp. Bot. 196, 3247–3258.

    Article  Google Scholar 

  8. 8.

    Fukuda, H. (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 196, 245–253.

    Article  Google Scholar 

  9. 9.

    Gaffal, K. P., Friedrichs, G. J., El-Gammal, S. (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann. Bot. 196, 593–607.

    Article  Google Scholar 

  10. 10.

    Glücksmann, A. (1951) Cell deaths in normal vertebrate ontogeny. Biol. Rev. 196, 59–86.

    Article  Google Scholar 

  11. 11.

    Hoagland, D. R., Snyder, W. C. (1933) Nutrition of strawberry plants under controlled conditions: a) Effects of deficiencies of boron and certain other elements; b) Susceptibility to injury from sodium salts. Proc. Am. Soc. Hort. Sci. 196, 288–294.

    Google Scholar 

  12. 12.

    Ito, J., Fukuda, H. (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 196, 3201–3211.

    Article  Google Scholar 

  13. 13.

    Jiang, A. L., Cheng, Y., Li, J., Zhang, W. (2008) A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol. 196, 1134–1141.

    Article  Google Scholar 

  14. 14.

    Kuriyama, H., Fukuda, H. (2002) Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 196, 568–573.

    Article  Google Scholar 

  15. 15.

    Leopold, A. C. (1961) Senescence in plant development: the death of plants or plant parts may be of positive ecological or physiological value. Science 196, 1727–1732.

    Article  Google Scholar 

  16. 16.

    Liu, Y., Zhou, Z. Q., Mei, F. Z., Zhou, G. S., Cai, J. T., Yang, W. L., Zhang, Z. H. (2013) Preliminary research on Cathepsin B-like protein in Triticum aestivum L. caryopsis and root. Hubei Agricultural Sciences 196, 4044–4047.

    Google Scholar 

  17. 17.

    Mea, M. D., Serafini-Fracassini, D., Duca, S. D. (2007) Programmed cell death: similarities and differences in animals and plants: a flower paradigm. Amino Acids 196, 395–404.

    Article  Google Scholar 

  18. 18.

    Mittler, R., Lam, E. (1995) Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 196, 1951–1962.

    Google Scholar 

  19. 19.

    Mittler, R., Lam, E. (1997) Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Mol. Biol. 196, 209–221.

    Article  Google Scholar 

  20. 20.

    Muramoto, Y., Watanabe, A., Nakamura, T., Takabe, T. (1999) Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 196, 315–321.

    Article  Google Scholar 

  21. 21.

    Obara, K., Kuriyama, H., Fukuda, H. (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 196, 615–626.

    Article  Google Scholar 

  22. 22.

    Peitsch, M. C., Mannherz, H. G., Tschopp, J. (1994) The apoptosis endonucleases: cleaning up after cell death. Trends Cell Biol. 196, 37–41.

    Article  Google Scholar 

  23. 23.

    Pennell, R. I., Lamb, C. (1997) Programmed cell death in plants. Plant Cell 196, 1157–1168.

    Article  Google Scholar 

  24. 24.

    Shen, R., Liu, X. Y., Zhang, H. X., Zhang, W. (2010) Effect of Zn2+ on rice root tip cells programmed cell death under high salt stress or UV-induced. J. Nanjing Agricult. Univ. 196, 13–18.

    Google Scholar 

  25. 25.

    Sodmergen, Kawano, S., Tano, S., Kuroiwa, T. (1991) Degradation of chloroplast DNA in second leaves of rice (Oryza sativa) before leaf yellowing. Protoplasma 196, 89–88.

    Article  Google Scholar 

  26. 26.

    Stein, J. C., Hansen, G. (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 196, 71–80.

    Article  Google Scholar 

  27. 27.

    Sugiyama, M., Ito, J., Aoyagi, S., Fukuda, H. (2000) Endonucleases. Plant Mol. Biol. 196, 387–397.

    Article  Google Scholar 

  28. 28.

    Feng, T. J. (2004) The Building and Application of Main Crop EST Analysis System. Dissertation, University of Chinese Academy of Agricultural Sciences, China.

    Google Scholar 

  29. 29.

    van Bel, A. J. E. (2003) The phloem, a miracle of ingenuity. Plant Cell Environ. 196, 125–149.

    Google Scholar 

  30. 30.

    Wang, H., Wu, H. M., Cheung, A. Y. (1996) Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J. 196, 715–727.

    Article  Google Scholar 

  31. 31.

    Wang, L. K., Zhou, Z. Q., Song, X. F., Li, J. W., Deng, X. X., Mei, F. Z. (2008) Evidence of ceased programmed cell death in metaphloem sieve elements in the developing caryopsis of Triticum aestivum L. Protoplasma 196, 87–96.

    Article  Google Scholar 

  32. 32.

    Yang, W. L. (2013) Study on Programmed Cell Semi-Death of Sieve Elements in Root and Developing Caryopsis of Triticum aestivum L. Dissertation, Huazhong Agricult. Univ., China.

    Google Scholar 

  33. 33.

    Wu, H., Zheng, X. F. (2003) Ultrastructural studies on the sieve elements in root protophleom of Arabidopsis thaliana. Acta Bot. Sin. 196, 322–330.

    Google Scholar 

  34. 34.

    Xu, Q. T., Yang, L., Zhou, Z. Q., Mei, F. Z., Qu, L. H., Zhou, G. S. (2013) Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 196, 969–982.

    Article  Google Scholar 

  35. 35.

    Yang, C. N., Zhou, Z. Q., Fan, H. Y., Jiang, Z., Mei, F. Z. (2012) Structure-function relationships during metaphloem sieve elements development in Triticum aestivum. Biologia Plantarum 196, 307–312.

    Article  Google Scholar 

  36. 36.

    Zaina, G., Morassutti, C., De Amicis, F., Fogher, C., Marchetti, S. (2003) Endonuclease genes up-regulated in tissues undergoing programmed cell death are expressed during male gametogenesis in barley. Gene 196, 43–50.

    Article  Google Scholar 

  37. 37.

    Zhou, Z. Q., Lan, S. Y., Zhu, X. T., Wang, W. J., Xu, Z. X. (2004) Ultrastructure and its function of phloem cell in abdominal vascular bundle of wheat caryopsis. Acta Agron. Sin. 196, 163–168.

    Google Scholar 

  38. 38.

    Zhou, Z. Q., Wang, L. K., Li, J. W., Song, X. F., Yang, C. N. (2009) Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. Protoplasma 196, 49–58.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zhuqing Zhou.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Zhang, Z., Zhou, Z. et al. Localization of Ben1-Like Protein and Nuclear Degradation During Development of Metaphloem Sieve Elements in Triticum Aestivum L.. BIOLOGIA FUTURA 66, 66–79 (2015). https://doi.org/10.1556/ABiol.66.2015.1.6

Download citation


  • Triticum aestivum L.
  • MSEs
  • immuno-electron microcoy
  • in-situ hybridization
  • BEN1-LIKE protein