The Potentiality of Trichoderma Harzianum in Alleviation the Adverse Effects of Salinity in Faba Bean Plants

Abstract

The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

References

  1. 1.

    Altintas, S., Bal, U. (2008) Effects of the commercial product based on Trichoderma harzianum on plant, bulb and yield characteristics of onion. Sci. Hortic. 116, 219–222.

    Article  Google Scholar 

  2. 2.

    Aust, S. D., Morehouse, L. A., Thomas, C. (1985) Role of metals in oxygen radical reactions. J. Free Radic. Biol. Med. 1, 3–26.

    CAS  Article  Google Scholar 

  3. 3.

    Bates, L. S., Waldern, R. P., Teare, I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207.

    CAS  Google Scholar 

  4. 4.

    Bewlfey, J. D., Oliver, M. J. (1983) Responses to a changing environment at the molecular level: Does desiccation, modulate protein synthesis at the transcriptional or translational level in a tolerant plant? Current Topics Plant Biochem. Biophys. 2, 145–146.

    Google Scholar 

  5. 5.

    Chang, Y. C., Baker, R., Kleifeld, O., Chet, I. (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum, Plant Disease 70, 145–148.

    Article  Google Scholar 

  6. 6.

    Egberongbe, H. O., Akintokun, A. K., Babalola, O. O., Bankole, M. O. (2010) The effect of Glomus mosseae and Tricoderma harizianum on proximate analysis of soybean (Glycine max. (L.) Merrill) Seed grown in sterilized and unsterilized soil. J. Agric. Extension Rural Development 2, 54–58.

    Google Scholar 

  7. 7.

    FAO (2000) Global network on integrated soil management for sustainable use of salt effected soils, Available in: http://www.fao.org/ag/AGL/agll/spush/intro.htm.

    Google Scholar 

  8. 8.

    Foyer, C. H., Kiddle, G., Antoniw, J., Bernard, S., Verrier, P. J., Pastori, G. M., Noctor, G. (2003) The role of antioxidant-mediated signal transduction during stress. Mol. Cell. Proteomics 2, 682.

    Google Scholar 

  9. 9.

    Gachomo, E. W., Kotchoni, S. O. (2008) The use of T. harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernels. Biotechnol. 7, 439–447.

    Article  Google Scholar 

  10. 10.

    Grattan, S. R., Grieve, C. M. (1999) Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 78, 127–157.

    CAS  Article  Google Scholar 

  11. 11.

    Greenway, H., Munns, H. (1980) Mechanisms of salt tolerance in non halophytes. Annu. Rev. Plant Physiol. 31, 149–190.

    CAS  Article  Google Scholar 

  12. 12.

    Grichko, V. P., Glick, B. R. (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11–17.

    CAS  Article  Google Scholar 

  13. 13.

    Harman, G. E., Mattick, L. R. (1976) Association of lipid oxidation with seed aging and death. Nature 260, 323–324.

    CAS  Article  Google Scholar 

  14. 14.

    Harman, G. E. (2000) Myths and dogmas of biocontrol–changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84, 377–393.

    CAS  Article  Google Scholar 

  15. 15.

    Harman, G. E., Björkman, T. (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman, G. E., Kubicek, C. P. (eds), Trichoderma and Gliocladium. 2, Taylor & Francis, London, United Kingdom, pp. 229–265.

    CAS  Google Scholar 

  16. 16.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. 1. Kinetics and stiochiometry of fatty acid peroxidation. Arch. Bioch. Biophys. 125, 189–198.

    CAS  Article  Google Scholar 

  17. 17.

    Hong, Z. L., Lakkineni, K., Zhang, Z. M., Verma, D. P. S. (2000) Removal of feedback inhibition of delta (1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122, 1129–1136.

    CAS  Article  Google Scholar 

  18. 18.

    Howell, C. R. (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87, 4–10.

    CAS  Article  Google Scholar 

  19. 19.

    Khan, M. H., Panda, S. K. (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl salinity stress. Acta Physiol. Plant. 30, 91–98.

    Article  Google Scholar 

  20. 20.

    Laemmli, U. K. (1970) Cleavage of structure proteins during assembly of the head of bacteriophage T4. Nature 277, 680–685.

    Article  Google Scholar 

  21. 21.

    Lowery, O. H., Rosebrough, N. H., Farr, A. L., Randall, R. J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193, 291–297.

    Google Scholar 

  22. 22.

    Mastouri, F., Björkman, T., Harman, G. E. (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathol. 100, 1213–1221.

    Article  Google Scholar 

  23. 23.

    Michal, S. G., Harman, E. (2008) The molecular basis of shoot responses of maize seedling to Trichoderma harizianum T22 inoculation of the root. Plant Physiol. 147, 2147–2163.

    Article  Google Scholar 

  24. 24.

    Munns, R., Termaat, A. (1986) Whole plant responses to salinity. Aust. J. Plant Physiol. 13, 143–160.

    Google Scholar 

  25. 25.

    Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., Mariani, P., Lorito, M. (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol. 7, 41–49.

    Article  Google Scholar 

  26. 26.

    Shiqing, S., Shirong, G., Qingmao, S., Zhigang, Z. (2006) Physiological effects of exogenous salicylic acid on cucumber seedling under salt stress. Acta Hortic. Sin. 33, 68–72.

    Google Scholar 

  27. 27.

    Sivritepe, N., Sivritepe, H. O., Eris, A. (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci. Hortic. 97, 229–237.

    CAS  Article  Google Scholar 

  28. 28.

    Tammam, A. A. (2003) Response of Vicia faba plants to the interactive effect of sodium chloride salinity and salicylic acid treatment. Acta Agron. Hungarica 51, 239–248.

    CAS  Article  Google Scholar 

  29. 29.

    Tucci, M., Ruocco, M., De Masi, L., De Palma, M., Lorito, M. (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol. 12, 341–354.

    CAS  Article  Google Scholar 

  30. 30.

    Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S. L., Lorito, M. (2008) A novel role for R. Hermosa and others Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72, 80–86.

    CAS  Article  Google Scholar 

  31. 31.

    Wiersma, T. V., Bailey, T. B. (1975) Estimation of leaflet, trifoliate and total leaf area of soybean. Agron. J. 176, 26–30.

    Article  Google Scholar 

  32. 32.

    Williams, S., Twine, M. (1960) Flame photometric method for sodium, potassium and calcium. In: Peach, K., Tracey, M. V. (eds) Modern Methods of Plant Analysis. Vol. 5. Springer Verlag, Berlin, pp. 3–5.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Prof. Dr. M. A. A. Shaddad, Assuit University for his valuable advices and revising the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. K. Abd El-Baki.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Baki, G.K.A., Mostafa, D. The Potentiality of Trichoderma Harzianum in Alleviation the Adverse Effects of Salinity in Faba Bean Plants. BIOLOGIA FUTURA 65, 451–468 (2014). https://doi.org/10.1556/ABiol.65.2014.4.9

Download citation

Keywords

  • Lipid peroxidation
  • proline
  • proteins
  • potassium
  • salinity
  • sodium
  • Trichoderma