Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 4, pp 414–427 | Cite as

Genetic Differentiation among 6 Populations of Red Deer (Cervus elaphus L.) in Poland Based on Microsatellite DNA Polymorphism

  • Anna RadkoEmail author
  • D. Zalewski
  • Dominika Rubiś
  • Agnieszka Szumiec
Article

Abstract

Recently, there has been considerable interest in genetic differentiation in the Cervidae family. A common tool used to determine genetic variation in different species, breeds and populations is DNA analysis, which allows for direct determination of the differences and changes within a group of animals. Because the analysis of microsatellite polymorphism in different Cervidae populations revealed considerable genetic variability in individual populations, it was important to test a set of markers in animals from these populations.

The study was performed with muscle tissue and blood samples collected from a total of 793 red deer. Six groups (subpopulations) of red deer were defined according to region: Masurian (330 animals), Bieszczady (194 animals), Małopolska (80 animals), Sudety (76 animals), Lower Silesian (62 animals) and Lubusz (51 animals). The analysis involved 12 STR markers (BM1818, OarAE129, OarFCB5, OarFCB304, RM188, RT 1, RT 13, T26, T156, T193, T501, TGLA53), for which conditions for simultaneous amplification were established.

Based on this study, it is concluded that the chosen set of 12 microsatellite markers could be used to evaluate the genetic structure and to monitor changes in Poland’s red deer population.

Keywords

Cervidae microsatellite DNA sequences STR population studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashley, E. P., McCullough, G. B., Robinson, J. T. (1998) Morphological responses of white-tailed deer to a severe population reduction. Can. J. Zool. 76, 1–5.Google Scholar
  2. 2.
    Bonnet, A., Thévenon, S., Maudet, F., Maillard, J. C. (2002) Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Anim. Genet. 33, 343–350.PubMedGoogle Scholar
  3. 3.
    Borkowski, J. (1998) Density and population parameters. Brać Łowiecka, 10, 18. [In Polish]Google Scholar
  4. 4.
    Botstein, D., White, R. L., Skolnick, M., Davis, R. W. (1980) Construction of genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32, 314–331.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cosse, M., González, S., Maldonado, J. E. (2007) Cross-amplification tests of ungulate primers in the endangered Neotropical pampas deer (Ozotoceros bezoarticus). Genet. Mol. Res. 6, 1118–1122.PubMedGoogle Scholar
  6. 6.
    Feulner, P. G. D., Bielfeldt, W., Zachos, F. E., Bradvarovic, J., Eckert, I., Hartl, G. B. (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93, 299–306.PubMedGoogle Scholar
  7. 7.
    Frantz, A. C., Hamann, J.-L., Klein, F. (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur. J. Wildl. Res. 54, 44–52.Google Scholar
  8. 8.
    Grabińska, G. (2007) The variability of spatial and temporal distribution of Polish mammalian game species game. Geographical Documentation No. 34. Polish Academy of Sciences Stanisław Leszczycki Institute of Geography and Spatial Organization. BCI@PAN, http://www.bibliotekacyfrowa.pan.pl.. [In Polish]Google Scholar
  9. 9.
    Haanes, H., Rosef, O., Veiberg, V., Rřed, K. H. (2005) Microsatellites with variation and heredity applicable to genetic studies of Norwegian red deer (Cervus elaphus atlanticus). Anim. Genet. 36, 454–455.PubMedGoogle Scholar
  10. 10.
    Kruuk, L. E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F., Clutton-Brock, T. (2002) Antler size in red deer: Heritability and selection but no evolution. Evolution 56, 1683–1695.PubMedGoogle Scholar
  11. 11.
    Lukefahr, S. D., Jacobson, H. A. (1998) Variance component analysis and heritability of antler traits in white-tailed deer. J. Wild. Manage 62, 262–268.Google Scholar
  12. 12.
    Łabudzki, L. (1993) Characteristics of the selected biometric features of deer (Cervus elaphus L.) in Wielkopolska region. Anna. Acad. Agricult., Scientific dissertation, Poznań. 241, 1–59. [In Polish]Google Scholar
  13. 13.
    Martinez, M. J. G., Carranza, J., Fernández, J. L., Sánchez-Prieto, C. (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J. Wildl. Manage 66, 1273–1282.Google Scholar
  14. 14.
    Meredith, E. P. (2005) Characterization of an additional 14 microsatellite loci in California Elk (Cervus elaphus) for use in forensic and population applications. Conserv. Genet. 6, 151–153.Google Scholar
  15. 15.
    Nei, M., Roychoudhury, A. K. (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76, 379–390.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Niemczewski, C., Rutkowski, J., Żurkowski, M. (2002) Preliminary investigations on the polymorphism of microsatellite markers in Mazurian red deer (Cervus elaphus). Anim. Sci. Pap. Rep. 20, 169–174.Google Scholar
  18. 18.
    Okada, A., Tamate, H. B. (2000) Pedigree analysis of the sika deer (Cervus nippon) using microsatellite markers. Zool. Sci. 17, 335–340.PubMedGoogle Scholar
  19. 19.
    Pélabon, C., van Breukelen, L. (1998) Asymmetry in antler size in roe deer (Capreolus capreolus): an index of individual and population conditions. Oecologia 116, 1–8.PubMedGoogle Scholar
  20. 20.
    Pérez-Espona, S., Pérez-Barbería, J., McLeod, E., Jiggins, C. D., Gordon, I. J., Pemberton, J. M. (2008) Landscape features affect gene flow of Scottish highland red deer (Cervus elaphus). Mol. Ecol. 17, 981–996.PubMedGoogle Scholar
  21. 21.
    Radko, A., Szumiec, A. (2010) Microsatellite DNA polymorphism in red deer (Cervus elaphus) in Poland. Proc. 32nd Int. Conf. of ISAG, 26–30.07.2010. Book of Abstracts, Edinburgh (Scotland).Google Scholar
  22. 22.
    Reynolds, J., Weir, B. S., Cockerham, C. C. (1983) Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Røed, K. H. (1998) Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. Hereditas 129, 19–25.PubMedGoogle Scholar
  24. 24.
    Røed, K. H., Midthjell, L. (1998) Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol. Ecol. 7, 1773–1776.Google Scholar
  25. 25.
    Schmidt, K. T., Stien, A., Albon, S. D., Guinness, F. E. (2001) The influence of density and weather on antler length in yearling red deer. Oecologia 127, 191–197.PubMedGoogle Scholar
  26. 26.
    Slate, J., Coltman, D. W., Goodman, S. J., MacLean, I., Pemberton, J. M., Williams, J. L. (1998) Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim. Genet. 29, 307–315.PubMedGoogle Scholar
  27. 27.
    Slate, J., Kruuk, L. E. B., Marshall, C., Pemberton, J. M., Clutton-Brock, T. H. (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc. Royal Soc. Biol. Sci. 267, 1657–1662.Google Scholar
  28. 28.
    Sneath, P. H. A., Sokal, R. R. (1973) Numerical taxonomy–the principles and practice of numerical classification. W. H. Freeman, San Francisco.Google Scholar
  29. 29.
    Socratous, E., Graham, E. A. M., Rutty, G. N. (2009) Forensic DNA profiling of Cervus elaphus species in the United Kingdom. Forensic Sci. Int. Genet. Suppl. 2, 281–282.Google Scholar
  30. 30.
    Szabolcsi, Z., Egyed, B., Zenke, P., Padar, Z., Borsy, A., Steger, V., Pasztor, E., Csanyi, S., Buzas, Z., Orosz, L. (2014) Constructing STR Multiplexes for Individual Identification of Hungarian Red Deer. J. Forensic Sci. 2014 doi: 10.1111/1556-4029.12403Google Scholar
  31. 31.
    Tamate, H. B., Okada, A., Minami, M., Ohnishi, N., Higuchi, H., Takatsuki, S. (2000) Genetic variations revealed by microsatellite markers in a small population of the Sika deer (Cervus nippon) on Kinkazan Island, Northern Japan. Zool. Sci. 17, 47–53.PubMedGoogle Scholar
  32. 32.
    Tomek, A. (2002) Właściwości i struktura populacji jelenia (Cervus elaphus L.) w lasach krynickich (Karpaty). [in Polish] Scientific Papers of the Agricultural University in Krakow. PhD dissertation. 278, 1–99.Google Scholar
  33. 33.
    van Den Berg, G. H. J., Garrick, D. J. (1997) Inheritance of adult velvet antler weights and live weights in farmed red deer. Livest. Prod. Sci. 49, 287–295.Google Scholar
  34. 34.
    Vial, L., Maudet, C., Luikart, G. (2003) Thirty-four polymorphic microsatellites for European roe deer. Mol. Ecol. Notes 3, 523–527.Google Scholar
  35. 35.
    Wang, Z., Yang, R. C., Goonewardene, L. A., Huedepohl, C. (1999) Genetic analysis of velvet antler yield in farmed elk (Cervus elaphus). Can. J. Anim. Sci. 79, 569–571.Google Scholar
  36. 36.
    Williams, J. D., Krueger, W. F., Harmel, D. H. (1994) Heritabilities for antler characteristics and body weight in yearling white-tailed deer. Heredity 73, 78–83.Google Scholar
  37. 37.
    Wilson, G. A., Strobeck, C., Wu, L., Coffin, J. (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. Notes 6, 697–699.Google Scholar
  38. 38.
    Wright, S. (1978) Evolution and the Genetics of Populations. Vol. 4. University of Chicago Press, Chicago.Google Scholar
  39. 39.
    Yoshio, M., Asada, M., Ochiai, K., Goka, K., Miyashita, T., Tatsuta, H. (2009) Evidence for cryptic genetic discontinuity in a recently expanded sika deer population on the Boso Peninsula, Central Japan. Zool. Sci. 26, 48–53.PubMedGoogle Scholar
  40. 40.
    Zachos, F. E., Hajji, G. M., Hmwe, S. S., Hartl, G. B., Lorenzini, R., Mattioli, S. (2009) Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildl. Biol. 15, 175–186.Google Scholar
  41. 41.
    Zalewski, D., Szczepański, W. (2004) Growth and development of morphological characters of red deer (Cervus elaphus L.) antlers in the Warmia and Mazury Province. Sylwan 7, 37–45. [In Polish]Google Scholar
  42. 42.
    Zalewski, D., Szczepański, W. (2004) Age grouping of red deer (Cervus elaphus L.) stags for the selection of individuals in Warmia and Mazury regions. Sylwan 8, 43–51. [In Polish]Google Scholar
  43. 43.
    Zalewski, D., Szczepański, W. (2004) A proposal of a novel classification of age groups for red deer stags (Cervus elaphus L.) in Warmińsko-Mazurskie province. Sylwan 9, 11–19. [In Polish]Google Scholar
  44. 44.
    Zalewski, D., Szczepański, W. (2004) Contribution of particular features of red deer (Cervus elaphus L.) antlers in the CIC score. Sylwan 10, 30–37. [In Polish]Google Scholar
  45. 45.
    Zalewski, D., Kaszewska, T., Małas, P., Konstantynowicz, M. (2009) Verification of the accuracy of the_traditional hunters’ method of red deer (Cervus elaphus L.) stags age determination with the histological analysis of mandible dentition. Sylwan 153, 240–252. [In Polish]Google Scholar
  46. 46.
    Zalewski, D., Sender, G., Pawlik, A., Żurkowski, M. (2009) Genetic structure of red deer (Cervus elaphus) population from Warmińsko-Mazurskie district inferred from microsatellite data. Ann. Polish Soc. Zootechnol. 5, 71–84. [In Polish]Google Scholar
  47. 47.
    Zalewski, D. (2010) Evaluation of the selected phenotypic traits of red deer male (Cervus elaphus L.) on the background of the management of its population in the fisheries of Warmia and Mazury regions. Dissertation and monograph 158, 1–116. [In Polish]Google Scholar
  48. 48.
    Židek, R., Pokorámi, J., Bandry, L. (2008) Biodiversity in deer population observed by microsatellite markers. J. Agrobiol. 25, 113–115.Google Scholar
  49. 49.
    Zsolnai, A., Lehoczky, I., Gyurmán, A., Nagy, J., Sugár, I., Anton, I., Horn, P., Magyary, I. (2009) Development of eight-plex microsatellite PCR for parentage control in deer. Archiv. Tierzucht 52, 143–149.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Anna Radko
    • 1
    Email author
  • D. Zalewski
    • 2
  • Dominika Rubiś
    • 1
  • Agnieszka Szumiec
    • 1
  1. 1.Department of Animal Cytogenetics and Molecular GeneticsNational Research Institute of Animal ProductionBalicePoland
  2. 2.Department of Fur-bearing Animal Breeding and Game ManagementUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations