Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 4, pp 396–404 | Cite as

Comparison of Anti-Acetylcholinesterase Activity of Bulb and Leaf Extracts of Sternbergia candida Mathew & T. Baytop

  • M. Z. HaznedarogluEmail author
  • G. Gokce
Article

Abstract

Studies on Alzheimer’s disease have been highlighted due to increasing prevalence of this disease. Oldest hypothesis about the pathophysiology strengthens the research of cholinesterase inhibitors for treatment. Amaryllidaceae plants are well known for alkaloids showing cholinesterase inhibiting activity. Among them, Sternbergia species gained attention as a source of metabolites of these alkaloid contents. Studies have focused mainly on the bulbs of these plants. In this study the potential acetylcholinesterase (AChE) inhibitory activity of endemic Sternbergia candida Mathew & T. Baytop (Sc) species was evaluated in both bulbs and leaves in comparison with lycorine. We report for the first time that methanol and chloroform leaf extracts of the plant show AChE inhibitory (AChEI) activity. Among the leaf extracts methanolic extract was much more potent than chloroform extract by means of AChE inhibition. Although IC50 values for methanolic extract was found to be lower than reference drug lycorine; this value of inhibition did not reach to a statistically significant level. Future studies aiming at investigation of the AChE inhibitory activity could be considered using leaves of the plant.

Keywords

Sternbergia candida lycorine AchE inhibitory activity bulbs leaves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to Ernst Mach Grants and OEAD for the supports; Prof. Dr. Ulvi Zeybek and Prof. Dr. Levent Ustunes for facilities; Dr. Bio. Hasan Yildirim, Burak Isman and Ali Es for kind helps in collecting the plant.

References

  1. 1.
    Abdalla, S., Abu, M. Z., Sabri, S. (1993) Alkaloids of Sternbergia clusiani and effects of lycorine on guinea pig isolated pulmonary artery and heart. Fitoterapia 64, 518–523.Google Scholar
  2. 2.
    Adhami, H. R., Farsam, H., Krenn, L. (2011) Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother. Res. 25, 1148–1152.CrossRefGoogle Scholar
  3. 3.
    Adhami, H. R., Linder, T., Kaehlig, H., Schuster, D., Zehl, M., Krenn, L. (2012) Catechol alkenyls from Semecarpus anacardium: Acetylcholinesterase inhibition and binding mode predictions. J. Ethnopharmacol. 139, 142–148.CrossRefGoogle Scholar
  4. 4.
    Berkov, S., Codina, C., Viladomat, F., Bastida, J. (2008) N-alkylated galanthamine derivatives: Potent acetylcholinesterase inhibitors from Leucojum aestivum. Bioorg. Med. Chem. Lett. 18, 2263–2266.CrossRefGoogle Scholar
  5. 5.
    Calderon, A. I., Cubilla, M., Espinosa, A., Gupta, M. P. (2010) Screening of plants of Amaryllidaceae and related families from Panama as sources of acetylcholinesterase inhibitors. Pharm. Biol. 48, 988–993.CrossRefGoogle Scholar
  6. 6.
    Citoglu, G. S., Acikara, O. B., Yilmaz, B. S., Ozbek, H. (2012) Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia 83, 81–87.CrossRefGoogle Scholar
  7. 7.
    Citoglu, G. S., Yilmaz, B. S., Bahadir, O. (2008) Quantitative analysis of lycorine in Sternbergia species growing in Turkey. Chem. Nat. Compd. 44, 826–828.CrossRefGoogle Scholar
  8. 8.
    Citoglu, G., Tanker, M., Gumusel, B. (1998) Antiinflammatory effects of lycorine and hemanthidine. Phytother. Res. 12, 205–206.CrossRefGoogle Scholar
  9. 9.
    Davis, P. H. (1984) Flora of Turkey and the East Aegean Islands. University of Edinburgh Press, Edinburgh.Google Scholar
  10. 10.
    Elgorashi, E. E., Stafford, G. I., Van Staden, J. (2004) Acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids. Planta Med. 70, 260–262.CrossRefGoogle Scholar
  11. 11.
    Elisha, I. L., Elgorashi, E. E., Hussein, A. A., Duncan, G., Eloff, J. N. (2013) Acetylcholinesterase inhibitory effects of the bulb of Ammocharis coranica (Amaryllidaceae) and its active constituent lycorine. S. Afr. J. Bot. 85, 44–47.CrossRefGoogle Scholar
  12. 12.
    Ellman, G. L., Courtney, K. D., Andres, V. Jr., Feather-Stone, R. M. (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmac. 7, 85–89.CrossRefGoogle Scholar
  13. 13.
    Francis, P. T., Palmer, A. M., Snape, M., Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147.CrossRefGoogle Scholar
  14. 14.
    Hamulakova, S., Janovec, L., Hrabinova, M., Kristian, P., Kuca, K., Banasova, M., Imrich, J. (2012) Synthesis, design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 5, 523–531.Google Scholar
  15. 15.
    Haznedaroglu, M. (2011) Determination of lycorine of Sternbergia candida by HPLC. Planta Med. 77, 1392–1392.CrossRefGoogle Scholar
  16. 16.
    Jin, Z. (2013) Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 30, 849–868.CrossRefGoogle Scholar
  17. 17.
    Kurkcuoglu, M. B., K. Husnu Can. (2010) Headspace volatiles of three Turkish plants. J. Essent. Oil Res. 22, 389–392.CrossRefGoogle Scholar
  18. 18.
    Mammadov, R., Kara, Y., Vaizogullar Ertem, H. (2011) Study on the phenolic content, antioxidant and antimicrobial effects of Sternbergia clusiana. Asian. J. Chem. 23, 5280–5284.Google Scholar
  19. 19.
    Marston, A., Kissling, J., Hostettmann, K. (2002) A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal. 13, 51–54.CrossRefGoogle Scholar
  20. 20.
    Nikolova, M., Gevrenova, R. (2005) Determination of phenolic acids in amaryllidaceae species by high performance liquid chromatography. Pharm. Biol. 43, 289–291.CrossRefGoogle Scholar
  21. 21.
    Orhan, I. E., Erdem, S. A., Senol, F. S., Kartal, M., Sener, B. (2012) Exploration of cholinesterase and tyrosinase inhibitory, antiprotozoal and antioxidant effects of Buxus sempervirens L. (boxwood). Ind. Crop. Prod. 40, 116–121.CrossRefGoogle Scholar
  22. 22.
    Orhan, I. E., Yilmaz, B. S., Altun, M. L., Saltan, G., Sener, B. (2011) Anti-acetylcholinesterase and antioxidant appraisal of the bulb extracts of five Sternbergia species. Rec. Nat. Prod. 5, 193–201.Google Scholar
  23. 23.
    Ozturk, M., Kolak, U., Topcu, G., Oksuz, S., Choudhary, M. I. (2011) Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chem. 126, 31–38.CrossRefGoogle Scholar
  24. 24.
    Rhee, I. K., Van de Meent, M., Ingkaninan, K., Verpoorte, R. (2001) Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A. 915, 217–223.CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Franco, M. I., Fernandez-Bachiller, M. I., Perez, C., Hernandez-Ledesma, B., Bartolome, B. (2006) Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem. 49, 459–462.CrossRefGoogle Scholar
  26. 26.
    Sarikaya, B. B., Kaya, G. I., Onur, M. A., Viladomat, F., Codina, C., Bastida, J., Somer, N. U. (2012) Alkaloids from Galanthus rizehensis. Phytochemistry Letters 5, 367–370.CrossRefGoogle Scholar
  27. 27.
    Stahl, S. M. (2008) Stahl’s essential psychopharmacology. Cambridge University Press, New York, 3: 899–943.Google Scholar
  28. 28.
    Tanker, M., Citoglu, G., Gumusel, B., Sener, B. (1996) Alkaloids of Sternbergia clusiana and their analgesic effects. Int. J. Pharmacogn. 34, 194–197.CrossRefGoogle Scholar
  29. 29.
    Terry, A. V. Jr., Buccafusco, J. J. (2003) The cholinergic hypothesis of age and Alzheimer’s diseaserelated cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821–827.CrossRefGoogle Scholar
  30. 30.
    Torras-Claveria, L., Berkov, S., Jauregui, O., Caujape, J., Viladomat, F., Codina, C., Bastida, J. (2010) Metabolic profiling of bioactive Pancratium canariense extracts by GC-MS. Phytochem. Anal. 21, 80–88.CrossRefGoogle Scholar
  31. 31.
    Unver, N., Irem Kaya, G., Tansel Ozturk, H. (2005) Antimicrobial activity of Sternbergia sicula and Sternbergia lutea. Fitoterapia 76, 226–229.CrossRefGoogle Scholar
  32. 32.
    WHO (2002) WHO global strategy on traditional and alternative medicine. Public Health Rep., Geneva, pp. 1.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Pharmaceutical Botany, Faculty of PharmacyEge UniversityIzmirTurkey
  2. 2.Department of Pharmacology, Faculty of PharmacyEge UniversityIzmirTurkey

Personalised recommendations