Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 4, pp 379–384 | Cite as

Effect of Sodium Conductance Variations on Electrical Behavior of a Neocortical Neuron Model

  • T. ShirahataEmail author
Article
  • 1 Downloads

Abstract

Neocortical pyramidal neurons are capable of intrinsic regenerative firing. A mathematical model introduced by Delord et al. [2] of these neurons based on the Hodgkin-Huxley formalism, varied the values of two parameters of the model, i.e. the maximal persistent sodium conductance (gNaP) and the leakage one (gl), and revealed the (gNaP, gl) parameter space supporting regenerative firing. The present study focused on another parameter of this model, i.e. the maximal fast sodium conductance (gNa), to investigate the (gNaP, gNa) parameter space involved in regenerative firing. When gNa was completely blocked, regenerative firing was suppressed. In addition, the gNa threshold necessary to induce regenerative firing was almost independent of the gNaP level. Finally, our results were compared with those of other types of neurons.

Keywords

Persistent sodium conductance fast sodium conductance firing neocortical pyramidal neuron mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The author would like to thank Enago (www.enago.jp) for the English language review.

References

  1. 1.
    Butera, R. J., Rinzel, J., Smith, J. C. (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82, 382–397.CrossRefGoogle Scholar
  2. 2.
    Delord, B., Klaassen, A. J., Burnod, Y., Costalat, R., Guigon, E. (1997) Bistable behavior in a neocortical neurone model. Neuroreport. 8, 1019–1023.CrossRefGoogle Scholar
  3. 3.
    Del Negro, C. A., Koshiya, N., Butera, R. J., Smith, J. C. (2002) Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vitro. J. Neurophysiol. 88, 2242–2250.CrossRefGoogle Scholar
  4. 4.
    Drion, G., Massotte, L., Sepulchre, R., Seutin, V. (2011) How modeling can reconcile apparently discrepant experimental results: The case of pacemaking in dopaminergic neurons. PLoS Comput. Biol. 7(5); e1002050.CrossRefGoogle Scholar
  5. 5.
    Hodgkin, A. L., Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.CrossRefGoogle Scholar
  6. 6.
    Shirahata, T. (2011) The effect of variations in sodium conductances on pacemaking in a dopaminergic retinal neuron model. Acta Biol. Hung. 62, 211–214.CrossRefGoogle Scholar
  7. 7.
    Silva, L. R., Amitai, Y., Connors, B. W. (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435.CrossRefGoogle Scholar
  8. 8.
    Steffen, M. A., Seay, C. A., Amini, B., Cai, Y., Feigenspan, A., Baxter, D. A., Marshak, D. W. (2003) Spontaneous activity of dopaminergic retinal neurons. Biophys. J. 85, 2158–2169.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratory of Pharmaceutical Education, Kagawa School of Pharmaceutical SciencesTokushima Bunri UniversitySanuki, KagawaJapan

Personalised recommendations