Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 4, pp 481–492 | Cite as

Phosphatidate Phosphatase-1 is Functionally Conserved in Lipid Synthesis and Storage from Human to Yeast

  • Zhijia Fang
  • Song Wang
  • Xiuxiu Du
  • Ping ShiEmail author
  • Zhiwei HuangEmail author
Article

Abstract

Phosphatidate phosphatase-1 (PAP1) enzymes (yeast Pah1p/Smp2p, mammalian lipin1-3) have a key role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate (PA) and its product diacylglycerol (DAG). Recent investigation shows that mammalian lipin-1 complements phenotypes exhibited by yeast pah1Δ mutant cells, which indicates the functions of PAP1 enzymes are evolutionarily conserved. The observation was confirmed after transformation of human LPIN1 into PAH1-defective yeast, which resulted in human LPIN1-induced accumulation of triacylglycerol (TAG) and lipid droplet formation. In double mutants lacking Tgl3p and Tgl4p, overexpression of PAH1 or LPIN1-induced TAG accumulation and excessive obesity. Furthermore, the obese yeast was used as a model to study the anti-obesity effects of PAP1 activity inhibitors, including propranolol and clenbuterol. The data showed that the inhibitors significantly suppressed TAG accumulation and lipid droplets formation. These findings demonstrate that LPIN1 plays a functional role in lipid synthesis and storage, a role which is highly conserved from human to yeast. Inhibition of TAG synthesis will become an efficacious treatment strategy for obesity and our excessive obesity model will provide a very useful tool for discovery of new anti-obesity drugs in the future.

Keywords

Phosphatidate phosphatase triacylglycerol PAH1 LPIN1 obesity yeast model 

Abbreviations

ATGL

Adipose triglyceride lipase

DAG

Diacylglycerol

DIC

Differential interference contrast microscopy

HSL

Hormone-sensitive lipase

PA

Phosphatidate

PAP

Phosphatidate phosphatase

TAG

Triglyceride

TLC

Thin-layer chromatography

WT

Wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Ophry Pines and Orly Elpeleg for their kind gift of plasmid YEp-LPIN1. We are grateful to Dr. Deeksha Vishwamitra for her kind assistance in language proofing. This work was sponsored by grants from National Natural Science Foundation of China (31100549), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Fundamental Research Funds for the Central Universities (2232014A3-03 and 222201313010), the National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204).

References

  1. 1.
    Adeyo, O., Horn, P. J., Lee, S. K., Binns, D. D., Chandrahas, A., Chapman, K. D., Goodman, J. M. (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192, 1043–1055.CrossRefGoogle Scholar
  2. 2.
    Bilyk, A., Piazza, G., Bistline, R., Jr., Haas, M. (1991) Separation of cholesterol, and fatty acylglycerols, acids and amides by thin-layer chromatography. Lipids 26, 405–406.CrossRefGoogle Scholar
  3. 3.
    Brachmann, C. B., Davies, A., Cost, G. J. Caputo, E., Li, J., Hieter, P., Boeke, J. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.CrossRefGoogle Scholar
  4. 4.
    Carman, G. M., Han, G. S. (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31, 694–699.CrossRefGoogle Scholar
  5. 5.
    Choi, H. S., Su, W. M., Han, G. S., Plote, D., Xu, Z., Carman, G. M. (2012) Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J. Biol. Chem. 287, 11290–11301.CrossRefGoogle Scholar
  6. 6.
    Csaki, L. S., Reue, K. (2010) Lipins: multifunctional lipid metabolism proteins. Ann. Rev. Nutr. 30, 257–272.CrossRefGoogle Scholar
  7. 7.
    Gietz, R. D., Akio, S. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.CrossRefGoogle Scholar
  8. 8.
    Grimsey, N., Han, G. S., O’hara, L., Rochford, J. J., Carman, G. M., Siniossoglou, S. (2008) Temporal and spatial regulation of the phosphatidate phosphatases lipins 1 and 2. J. Biol. Chem. 283, 29166–29174.CrossRefGoogle Scholar
  9. 9.
    Guo, Y., Cordes, K. R., Farese, R. V., Jr., Walther, T. C. (2009) Lipid droplets at a glance. J. Cell Sci. 122, 749–752.CrossRefGoogle Scholar
  10. 10.
    Huang, Z., Sucgang, R. S., Lin, Y. Y., Shi, X., Boeke, J. D., Pan, X. (2008) Plasmid-chromosome shuffling for non-deletion alleles in yeast. Nat. Meth. 5, 167–169.CrossRefGoogle Scholar
  11. 11.
    Kitazono, A. A. (2009) Improved gap-repair cloning method that uses oligonucleotides to target cognate sequences. Yeast 26, 497–505.CrossRefGoogle Scholar
  12. 12.
    Kohlwein, S. D. (2010) Triacylglycerol homeostasis: insights from yeast. J. Biol. Chem. 285, 15663–15667.CrossRefGoogle Scholar
  13. 13.
    Kurat, C. F., Natter, K., Petschnigg, J., Wolinski, H., Scheuringer, K., Scholz, H., Zimmermann, R., Leber, R., Zechner, R., Kohlwein, S. D. (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J. Biol. Chem. 281, 491–500.CrossRefGoogle Scholar
  14. 14.
    Nanjundan, M., Possmayer, F. (2003) Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L1–L23.Google Scholar
  15. 15.
    O’hara, L., Han, G. S., Peak-Chew, S., Grimsey, N., Carman, G. M., Siniossoglou, S. (2006) Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J. Biol. Chem. 281, 34537–34548.CrossRefGoogle Scholar
  16. 16.
    Phan, J., Reue, K. (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab. 1, 73–83.CrossRefGoogle Scholar
  17. 17.
    Pyne, S., Long, J. S., Ktistakis, N. T., Pyne, N. J. (2005) Lipid phosphate phosphatases and lipid phosphate signalling. Biochem. Soc. Trans. 33, 1370–1374.CrossRefGoogle Scholar
  18. 18.
    Reue, K., Dwyer, J. R. (2009) Lipin proteins and metabolic homeostasis. J. Lipid Res. 50 Suppl, S109–S114.CrossRefGoogle Scholar
  19. 19.
    Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., Siniossoglou, S. (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941.CrossRefGoogle Scholar
  20. 20.
    Sasser, T., Qiu, Q. S., Karunakaran, S., Padolina, M., Reyes, A., Flood, B., Smith, S., Gonzales, C., Fratti, R. A. (2012) Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J. Biol. Chem. 287, 2221–2236.CrossRefGoogle Scholar
  21. 21.
    Schneiter, R., Daum, G. (2006) Extraction of yeast lipids. Methods Mol. Biol. 313, 41–45.PubMedGoogle Scholar
  22. 22.
    Sciorra, V. A., Morris, A. J. (2002) Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim. Biophys. Acta 1582, 45–51.CrossRefGoogle Scholar
  23. 23.
    Shahnazari, S., Yen, W. L., Birmingham, C. L., Shiu, J., Namolovan, A., Zheng, Y. T., Nakayama, K., Klionsky, D. J., Brumell, J. H. (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8, 137–146.CrossRefGoogle Scholar
  24. 24.
    Siniossoglou, S. (2013) Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim. Biophys. Acta 1831, 575–581.CrossRefGoogle Scholar
  25. 25.
    Skinner, J. R., Shew, T. M., Schwartz, D. M., Tzekov, A., Lepus, C. M., Abumrad, N. A., Wolins, N. E. (2009) Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J. Biol. Chem. 284, 30941–30948.CrossRefGoogle Scholar
  26. 26.
    Suviolahti, E., Reue, K., Cantor, R. M., Phan, J., Gentile, M., Naukkarinen, J., Soro-Paavonen, A., Oksanen, L., Kaprio, J., Rissanen, A., Salomaa, V., Kontula, K., Taskinen, M. R., Pajukanta, P., Peltonen, L. (2006) Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum. Mol. Genet. 15, 377–386.CrossRefGoogle Scholar
  27. 27.
    Sztalryd, C., Xu, G., Dorward, H., Tansey, J. T., Contreras, J. A., Kimmel, A. R., Londos, C. (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161, 1093–1103.CrossRefGoogle Scholar
  28. 28.
    Wolinski, H., Kohlwein, S. D. (2008) Microscopic analysis of lipid droplet metabolism and dynamics in yeast. Methods Mol. Biol. 457, 151–163.CrossRefGoogle Scholar
  29. 29.
    Zeharia, A., Shaag, A., Houtkooper, R. H., Hindi, T., De Lonlay, P., Erez, G., Hubert, L., Saada, A., De Keyzer, Y., Eshel, G., Vaz, F. M., Pines, O., Elpeleg, O. (2008) Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am. J. Hum. Genet. 83, 489–494.CrossRefGoogle Scholar
  30. 30.
    Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., Zechner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations