Acta Biologica Hungarica

, Volume 65, Issue 3, pp 285–293 | Cite as

Exaggerated Activity of HPA Axis in Obese Rats Fed Normocaloric Liquid Nutrition

  • Michaela Vrabcova
  • Livia Mikuska
  • M. Zeman
  • B. MravecEmail author


Experimental and clinical studies have shown alterations in activity of systems responsible for neuroendocrine stress response in obese individuals. Therefore we investigated the effect of palatable normocaloric liquid nutrition (Fresubin) on alterations in activity of the hypothalamic-pituitary-adrenal (HPA) axis in male Wistar rats of different developmental stages. Control rats (CON) received standard pellet chow all the time from weaning (21st day of age) to 150 days. Fresubin was administered throughout the experiment (LN), only in juvenility (from 21st to 90th day of age; LNJ) or only in adulthood (from 90th to 150th day of age; LNA). Body weight and energy intake were periodically monitored. Adrenal gland and fat tissue weight and plasma corticosterone levels (CORT) was determined after sacrification. Fresubin intake induced obesity in LN and LNA rats. In LN and LNA rats were observed elevated serum CORT levels, but only in LN rats with significant twofold increase compared to LNJ rats. However, the weight of adrenal glands did not differ between LN, LNJ and LNA experimental groups. Based on our results, we suggest, that obesity induced by Fresubin in LN and LNA rats is accompanied by increased HPA activity represented by elevated plasma CORT levels in these rats.


Corticosterone Fresubin liquid nutrition obesity rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arner, P. (2005) Effects of testosterone on fat cell lipolysis. Species differences and possible role in polycystic ovarian syndrome. Biochemie 87, 39–43.CrossRefGoogle Scholar
  2. 2.
    Benthem, L., Keizer, K., Wiegman, C. H., de Boer, S. F., Strubbe, J. H., Steffens, A. B., Kuipers, F., Scheurink, A. J. (2000) Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation. Am. J. Physiol. Endocrinol. Metab. 279, E1286–1293.CrossRefGoogle Scholar
  3. 3.
    Boukouvalas, G., Gerozissis, K., Kitraki, E. (2010) Fat feeding of rats during pubertal growth leads to neuroendocrine alterations in adulthood. Cell. Mol. Neurobiol. 30, 91–99.CrossRefGoogle Scholar
  4. 4.
    Bursac, B. N., Djordjevic, A. D., Vasiljevic, A. D., Milutinovic, D. D., Velickovic, N. A., Nestorovic, N. M., Matic, G. M. (2013) Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J. Nutr. Biochem. 24, 1166–1172.CrossRefGoogle Scholar
  5. 5.
    Dallman, M. F. (2010) Stress-induced obesity and the emotional nervous system. Trends Endocrinol. Metab. 21, 159–165.CrossRefGoogle Scholar
  6. 6.
    Dallman, M. F., la Fleur, S. E., Pecoraro, N. C., Gomez, F., Houshyar, H., Akana, S. F. (2004) Minireview: glucocorticoids-food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 145, 2633–2638.CrossRefGoogle Scholar
  7. 7.
    Davis, D. D., Ruiz, A. L., Yanes, L. L., Iliescu, R., Yuan, K., Moulana, M., Racusen, L. C., Reckelhoff, J. F. (2012) Testosterone supplementation in male obese Zucker rats reduces body weight and improves insulin sensitivity but increases blood pressure. Hypertension 59, 726–731.CrossRefGoogle Scholar
  8. 8.
    Ghalami, J., Zardooz, H., Rostamkhani, F., Farrokhi, B., Hedayati, M. (2013) Glucose-stimulated insulin secretion: effects of high-fat diet and acute stress. J. Endocrinol. Invest. 36, 835–842.PubMedGoogle Scholar
  9. 9.
    Chrousos, G. P. (2000) The HPA axis and the stress response. Endocr. Res. 26, 513–514.CrossRefGoogle Scholar
  10. 10.
    Jones, T. H. (2010) Effects of testosterone on Type 2 diabetes and components of the metabolic syndrome. J. Diabetes 2, 146–156.CrossRefGoogle Scholar
  11. 11.
    la Fleur, S. E. (2006) The effects of glucocorticoids on feeding behavior in rats. Physiol. Behav. 89, 110–114.CrossRefGoogle Scholar
  12. 12.
    Legendre, A., Harris, R. B. (2006) Exaggerated response to mild stress in rats fed high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1288–1294.CrossRefGoogle Scholar
  13. 13.
    Lenglos, C., Mitra, A., Guevremont, G., Timofeeva, E. (2013) Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. Genes Brain Behav. 12, 370–387.CrossRefGoogle Scholar
  14. 14.
    Levin, B. E., Richard, D., Michel, C., Servatius, R. (2000) Differential stress responsivity in dietinduced obese and resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1357–1364.CrossRefGoogle Scholar
  15. 15.
    Livingstone, D. E., Jones, G. C., Smith, K., Jamieson, P. M., Andrew, R., Kenyon, C. J., Walker, B. R. (2000) Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 141, 560–563.CrossRefGoogle Scholar
  16. 16.
    Masuzaki, H., Paterson, J., Shinyama, H., Morton, N. M., Mullins, J. J., Seckl, J. R., Flier, J. S. (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170.CrossRefGoogle Scholar
  17. 17.
    Michaelis, O. E. T., Carswell, N., Velasquez, M. T., Kimmel, P. L., Abraham, A. A., Canary, J. J., Hansen, C. T. (1990) Influence of genetic obesity, dietary carbohydrate and age on parameters of glucose tolerance and kidney and adrenal gland histology in female SHR/N-corpulent rats. Int. J. Obes. 14, 973–985.PubMedGoogle Scholar
  18. 18.
    Mikuska, L., Vrabcova, M., Lackovicova, L., Ukropec, J., Hegedusova, N., Slavkovsky, P., Hubka, P., Mravec, B. (2013) Long-term liquid nutrition intake and development of obesity: differences between young and adult rats. Endocr. Regul. 47, 85–92.CrossRefGoogle Scholar
  19. 19.
    Pecoraro, N., Reyes, F., Gomez, F., Bhargava, A., Dallman, M. F. (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145, 3754–3762.CrossRefGoogle Scholar
  20. 20.
    Pratchayasakul, W., Kerdphoo, S., Petsophonsakul, P., Pongchaidecha, A., Chattipakorn, N., Chattipakorn, S. C. (2011) Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci. 88, 619–627.CrossRefGoogle Scholar
  21. 21.
    Shin, A. C., MohanKumar, S. M., Sirivelu, M. P., Claycombe, K. J., Haywood, J. R., Fink, G. D., MohanKumar, P. S. (2010) Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int. J. Obes. (Lond) 34, 1218–1226.CrossRefGoogle Scholar
  22. 22.
    Tannenbaum, B. M., Brindley, D. N., Tannenbaum, G. S., Dallman, M. F., McArthur, M. D., Meaney, M. J. (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am. J. Physiol. 273, E1168–1177.CrossRefGoogle Scholar
  23. 23.
    Ulrich-Lai, Y. M., Figueiredo, H. F., Ostrander, M. M., Choi, D. C., Engeland, W. C., Herman, J. P. (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 291, E965–973.CrossRefGoogle Scholar
  24. 24.
    Umeoka, E. H., Garcia, S. B., Antunes-Rodrigues, J., Elias, L. L., Garcia-Cairasco, N. (2011) Functional characterization of the hypothalamic-pituitary-adrenal axis of the Wistar Audiogenic Rat (WAR) strain. Brain Res. 1381, 141–147.CrossRefGoogle Scholar
  25. 25.
    Walker, C. D., Salzmann, C., Long, H., Otis, M., Roberge, C., Gallo-Payet, N. (2004) Direct inhibitory effects of leptin on the neonatal adrenal and potential consequences for brain glucocorticoid feedback. Endocr. Res. 30, 837–844.CrossRefGoogle Scholar
  26. 26.
    Widmaier, E. P., Rosen, K., Abbott, B. (1992) Free fatty acids activate the hypothalamic-pituitaryadrenocortical axis in rats. Endocrinology 131, 2313–2318.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Michaela Vrabcova
    • 1
  • Livia Mikuska
    • 2
  • M. Zeman
    • 3
  • B. Mravec
    • 2
    • 4
    Email author
  1. 1.Institute of Histology and Embryology, Faculty of MedicineComenius UniversityBratislavaSlovak Republic
  2. 2.Institute of Experimental EndocrinologySlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Department of Animal Physiology and Ethology Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  4. 4.Institute of Physiology, Faculty of MedicineComenius UniversityBratislavaSlovak Republic

Personalised recommendations