Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 3, pp 346–354 | Cite as

Multiplication and Growth of Hybrid Poplar (Populus Alba × P. Tremula) Shoots on a Hormone-Free Medium

  • J. ŽiaukaEmail author
  • Sigutė Kuusienė
Article
  • 1 Downloads

Abstract

The present study explored an alternative approach for poplar micropropagation, based on the restriction of gas exchange between inside and outside environments of culture vessel, rather than on the application of exogenous hormones. Apical and nodal stem segments (explants) excised from in vitro-developed shoots of hybrid white poplar (Populus alba L. × P. tremula L.) were incubated in either sealed (with Parafilm) or unsealed capped glass culture tubes (150 × 20 mm) on a hormone-free Woody Plant Medium. Shoot proliferation on apical explants was observed in sealed culture tubes but not in the unsealed ones; the difference between these two samples in respect of shoot number increased in the course of time and became threefold after three months of culture, with 3.2 ± 0.4 (mean ± SE) shoots per explant in the sealed tubes versus 1.1 ± 0.1 in the unsealed ones (for comparison, the mean shoot numbers on nodal explants were 2.4 ± 0.3 and 3.4 ± 0.4 in the unsealed and sealed culture tubes, respectively). Moreover, the shoots taken from the sealed culture tubes could be distinguished by superior shoot length, if compared to the shoots from the unsealed tubes, during the subsequent culture stage under uniform conditions.

Keywords

Culture tube explant micropropagation restricted ventilation white poplar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benschop, J. J., Bou, J., Peeters, A. J. M., Wagemaker, N., Gühl, K., Ward, D., Hedden, P., Moritz, T., Voesenek, L. A. C. J. (2006) Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin1. Plant Physiol. 141, 1644–1652.CrossRefGoogle Scholar
  2. 2.
    Biddington, N. L. (1992) The influence of ethylene in plant tissue cultures. Plant Growth Regul. 11, 173–187.CrossRefGoogle Scholar
  3. 3.
    Bittsánszky, A., Gyulai, G., Gullner, G., Kiss, J., Szabó, Z., Kátay, G., Heszky, L., Kömíves, T. (2009) In vitro breeding of grey poplar (Populus × canescens) for phytoremediation purposes. J. Chem. Technol. Biotechnol. 84, 890–894.CrossRefGoogle Scholar
  4. 4.
    Buddendorf-Joosten, J. M. C., Woltering, E. J. (1994) Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul. 15, 1–16.CrossRefGoogle Scholar
  5. 5.
    Castiglione, S., Todeschini, V., Franchin, C., Torrigiani, P., Gastaldi, D., Cicatelli, A., Rinaudo, C., Berta, G., Biondi, S., Lingua, G. (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ. Pollut. 157, 2108–2117.CrossRefGoogle Scholar
  6. 6.
    Csabai, J., Nagy, Z., Mándy, A. T. (2011) In vitro shoot proliferation of Telekia speciosa (Schreb.) Baumg. induced by different cytokinins. Acta Biol. Hung. 62, 453–462.CrossRefGoogle Scholar
  7. 7.
    Dimasi-Theriou, K., Economou, A. S., Sfakiotakis, E. M. (1993) Promotion of petunia (Petunia hybrida L.) regeneration in vitro by ethylene. Plant Cell Tiss. Organ Cult. 32, 219–225.CrossRefGoogle Scholar
  8. 8.
    El Meskaoui, A., Tremblay, F. M. (1999) Effects of sealed and vented gaseous microenvironments on the maturation of somatic embryos of black spruce with a special emphasis on ethylene. Plant Cell Tiss. Organ Cult. 56, 201–209.CrossRefGoogle Scholar
  9. 9.
    El Meskaoui, A., Tremblay, F. M. (2001) Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J. Exp. Bot. 52, 761–769.CrossRefGoogle Scholar
  10. 10.
    Eriksson, M. E., Israelsson, M., Olsson, O., Moritz, T. (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol. 18, 784–788.CrossRefGoogle Scholar
  11. 11.
    González, A., Arigita, L., Majada, J., Sánchez-Tamés, R. (1997) Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul. 22, 1–6.CrossRefGoogle Scholar
  12. 12.
    Haver, D. L., Schuch, U. K., Lovatt, C. J. (2002) Exposure of petunia seedlings to ethylene decreased apical dominance by reducing the ratio of auxin to cytokinin. J. Plant Growth Regul. 21, 459–468.CrossRefGoogle Scholar
  13. 13.
    Jackson, M. B. (2003) Aeration stress in plant tissue cultures. Bulg. J. Plant Physiol. 29, 96–109.Google Scholar
  14. 14.
    Kevers, C., Boyer, N., Courduroux, J. C., Gaspar, T. (1992) The influence of ethylene on proliferation and growth of rose shoot cultures. Plant Cell Tiss. Organ Cult. 28, 175–181.CrossRefGoogle Scholar
  15. 15.
    Khattab, S. (2011) Effect of different media and growth regulators on the in vitro shoot proliferation of aspen, hybrid aspen and white poplar male tree and molecular analysis of variants in micropropagated plants. Life Sci. J. 8, 177–184.Google Scholar
  16. 16.
    Lai, C. C., Yeh, S. D., Yang, J. S. (2000) Enhancement of papaya axillary shoot proliferation in vitro by controlling the available ethylene. Bot. Bull. Acad. Sinica 41, 203–212.Google Scholar
  17. 17.
    Lambardi, M., Benelli, C., Fabbri, A. (1997) In vitro axillary shoot proliferation of apple rootstocks under different ethylene conditions. In Vitro Cell. Dev. Biol. Plant 33, 70–74.CrossRefGoogle Scholar
  18. 18.
    Magdalita, P. M., Godwin, I. D., Drew, R. A., Adkins, S. W. (1997) Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell Tiss. Organ Cult. 49, 93–100.CrossRefGoogle Scholar
  19. 19.
    McCown, B. H., Lloyd, G. (1981) Woody plant medium (WPM)–a mineral nutrient formulation for microculture of woody plant species. HortScience 16, 453.Google Scholar
  20. 20.
    Naik, S. K., Chand, P. K. (2003) Silver nitrate and aminoethoxyvinylglycine promote in vitro adventitious shoot regeneration of pomegranate (Punica granatum L.). J. Plant Physiol. 160, 423–430.CrossRefGoogle Scholar
  21. 21.
    Panizza, M., Mensuali-Sodi, A., Tognoni, F. (1993) Role of ethylene in axillary shoot proliferation of lavandin–interaction with benzyladenine and polyamines. J. Exp. Bot. 44, 387–394.CrossRefGoogle Scholar
  22. 22.
    Pereira-Netto, A. B. (2001) Effect of inhibitors of ethylene biosynthesis and signal transduction pathway on the multiplication of in vitro-grown Hancornia speciosa. Plant Cell Tiss. Organ Cult. 66, 1–7.CrossRefGoogle Scholar
  23. 23.
    Peternel, Š., Gabrovšek, K., Gogala, N., Regvar, M. (2009) In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis. Sci. Hortic. 121, 109–112.CrossRefGoogle Scholar
  24. 24.
    Pintarić, B. (2008) Micropropagation of white poplar (Populus alba L.). Šumarski List 132, 343–354. (In Croatian)Google Scholar
  25. 25.
    Rademacher, W. (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 501–531.CrossRefGoogle Scholar
  26. 26.
    Rédei, K. (2000) Early performance of promising white poplar (Populus alba) clones in sandy ridges between the rivers Danube and Tisza in Hungary. Forestry 73, 407–413.CrossRefGoogle Scholar
  27. 27.
    Rédei, K., Keserű, Z., Gábor, S. (2010) Early evaluation of promising white poplar (Populus alba L.) clones in Hungary. Acta Silv. Lign. Hung. 6, 9–16.Google Scholar
  28. 28.
    Rijnders, J. G. H. M., Yang, Y. Y., Kamiya, Y., Takahashi, N., Barendse, G. W. M., Blom, C. W. P. M., Voesenek, L. A. C. J. (1997) Ethylene enhances gibberellin levels and petiole sensitivity in floodingtolerant Rumex palustris but not in flooding intolerant R. acetosa. Planta 203, 20–25.CrossRefGoogle Scholar
  29. 29.
    Rosso, L., Facciotto, G., Bergante, S., Vietto, L., Nervo, G. (2013) Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl. Energy 102, 87–92.CrossRefGoogle Scholar
  30. 30.
    Santos-del-Blanco, L., De-Lucas, A. I., González-Martínez, S. C., Sierra-de-Grado, R., Hidalgo, E. (2013) Extensive clonal assemblies in Populus alba and Populus × canescens from the Iberian Peninsula. Tree Genet. Genomes 9, 499–510.CrossRefGoogle Scholar
  31. 31.
    Shimizu-Sato, S., Mori, H. (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol. 127, 1405–1413.CrossRefGoogle Scholar
  32. 32.
    Tsvetkov, I., Jouve, L., Hoffmann, L., Hausman, J. F. (2007) The medium composition differentially affects regrowth characteristics in in vitro-derived encapsulated shoot tips of Populus euphratica Oliv. Propag. Ornam. Plants 7, 180–183.Google Scholar
  33. 33.
    Wan, X., Landhäusser, S. M., Lieffers, V. J., Zwiazek, J. J. (2006) Signals controlling root suckering and adventitious shoot formation in aspen (Populus tremuloides). Tree Physiol. 26, 681–687.CrossRefGoogle Scholar
  34. 34.
    Welch, B. L. (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35.PubMedGoogle Scholar
  35. 35.
    Zobayed, S. M. A., Armstrong, J., Armstrong, W. (2002) Multiple shoot induction and leaf and flower bud abscission of Annona cultures as affected by types of ventilation. Plant Cell Tiss. Organ Cult. 69, 155–165.CrossRefGoogle Scholar
  36. 36.
    Žiauka, J., Kuusienė, S. (2010) Different inhibitors of the gibberellin biosynthesis pathway elicit varied responses during in vitro culture of aspen (Populus tremula L.). Plant Cell Tiss. Organ Cult. 102, 221–228.CrossRefGoogle Scholar
  37. 37.
    Žiauka, J., Kuusienė, S., Šilininkas, M. (2013) Fast growing aspens in the development of a plant micropropagation system based on plant-produced ethylene action. Biomass Bioenergy 53, 20–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of ForestryLithuanian Research Centre for Agriculture and ForestryKaunas distr.Lithuania

Personalised recommendations