Routine Sample Preparation and HPLC Analysis for Ascorbic Acid (Vitamin C) Determination in Wheat Plants and Arabidopsis Leaf Tissues
Abstract
Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.
Keywords
Ascorbic acid HPLC analysis plant tissue stress UV detectionAbbreviations
- AA
ascorbic acid, reduced form
- DHA
dehydroascorbic acid, oxidised form
Preview
Unable to display preview. Download preview PDF.
References
- 1.Agarwal, S. (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol. Plant. 51, 157–160.CrossRefGoogle Scholar
- 2.Arya, S. P., Mahajan, M., Jain, P. (2000) Non-spectrophotometric methods for determination of Vitamin C. Anal. Chim. Acta 417, 1–14.CrossRefGoogle Scholar
- 3.Attolico, A. D., De Tullio, M. C. (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol. Biochem. 44, 462–466.CrossRefGoogle Scholar
- 4.Bartoli, C. G., Pastori, G. M., Foyer, C. H. (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes II and IV. Plant Physiol. 123, 335–343.CrossRefGoogle Scholar
- 5.Chen, T. H. H., Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5, 250–257.CrossRefGoogle Scholar
- 6.Conklin, P. L., Williams, E. H., Last, R. L. (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant (ozone/ultraviolet B/sulfur dioxide/reactive oxygen detoxification/vitamin C). Proc. Natl. Acad. Sci USA 93, 9970–9974.CrossRefGoogle Scholar
- 7.Davey, M. W., Van Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., Fletcher, J. (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860.CrossRefGoogle Scholar
- 8.Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova Z. P., Feller, U. (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J. Plant Nutr. 29, 451–468.CrossRefGoogle Scholar
- 9.Fercha, A., Hocine, G., Mebarek, B. (2011) Improvement of salt tolerance in durum wheat by ascorbic acid application. J. Stress Physiol. Biochem. 7, 27–37.Google Scholar
- 10.Foyer, C. H., Noctor, G. (2005) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.CrossRefGoogle Scholar
- 11.Furusawa, N. (2001) Rapid high-performance liquid chromatographic identification/quantification of total vitamin C in fruit drinks. Food Control 12, 27–29.CrossRefGoogle Scholar
- 12.Gallie, D. R. (2013) l-Ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica, 2013, Article ID 795964.Google Scholar
- 13.Gazdik, Z., Zitka, O., Petrlova, J., Adam, V., Zehnalek, J., Horna, A., Reznicek, V., Beklova, M., Kizek, R. (2008) Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors 8, 7097–7112.CrossRefGoogle Scholar
- 14.Gest, N., Gautier, H., Stevens, R. (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64, 33–53.CrossRefGoogle Scholar
- 15.Karau, G. M., Njagi, E. N. M., Machocho, A. K., Wangai, L. N. (2012) Phytonutrient, mineral composition and in vitro antioxidant activity of leaf and stem bark powders of Pappea capensis (L.). Pak. J. Nutrition 11, 123–132.CrossRefGoogle Scholar
- 16.Khan, T. A., Mazid, M., Mohammad, F. (2012) Potential of ascorbic acid against oxidative burst in plants under biotic stress: A review. J. Ind. Res. & Technology 2, 72–80.Google Scholar
- 17.Kotchoni, S. O., Larrimore, K. E., Mukherjee, M., Kempinski, C. F., Barth, C. (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149, 803–815.CrossRefGoogle Scholar
- 18.Li, Q., Krauss, M. R. Hempfling, W. P. (2006) Wounding of root or basal stalk prior to harvest affects pre-harvest antioxidant accumulation and tobacco-specific nitrosamine formation during air curing of burley tobacco (Nicotiana tabacum L.). J. Agr. Crop Sci. 192, 267–277.CrossRefGoogle Scholar
- 19.Li, Q., Li, Y., Li, C., Yu, X. (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J. Genet. Plant Breed. 48, 74–86.CrossRefGoogle Scholar
- 20.López-Carbonell, M., Munné-Bosch, S., Alegre, L. (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J. Plant Growth Regul. 25, 137–144.CrossRefGoogle Scholar
- 21.Nayyar, H., Chander, S. (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agr. Crop Sci. 190, 355–365.CrossRefGoogle Scholar
- 22.Niu, Y., Wang, Y., Li, P., Zhang, F., Liu, H., Zheng, G. (2012) Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Acta Physiol. Plant. 35, 1189–1200.CrossRefGoogle Scholar
- 23.Novákova, L., Solich, P., Solichova, D. (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal. Chem. 27, 942–958.CrossRefGoogle Scholar
- 24.Panda, S. K., Khan, M. H. (2009) Growth, oxidative damage and antioxidant responses in Greengram (Vigna radiata L.) under short-term salinity stress and its recovery. J. Agr. Crop Sci. 195, 442–454.CrossRefGoogle Scholar
- 25.Pisoschi, A. M., Danet, A. F., Kalinowski, S. (2008) Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry. J. Autom. Methods Manag. Chem. 2008, Article ID 937651, doi:10.1155/2008/937651.Google Scholar
- 26.Prasad, B. B., Tiwari, K., Singh, M., Sharma, P. S., Patel, A. K., Srivastava, S. (2008) Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer- based sensor for ultratrace analysis of ascorbic acid. J. Chromatogr. A1198, 59–66.Google Scholar
- 27.Ribeiro, C., Cambraia, J., Peixoto, P. H. P., da Fonseca, J. É. M. (2012) Antioxidant system response induced by aluminum in two rice cultivars. Braz. J. Plant Physiol. 24, 107–116.CrossRefGoogle Scholar
- 28.Sawant, L., Prabhakar, B., Mahajan, A., Pai, N., Pandita, N. (2011) Development and validation of HPLC method for quantification of phytoconstituents in Phyllanthus emblica. J. Chem. Pharm. Res. 3, 937–944.Google Scholar
- 29.Shekhovtsova, T. N., Muginova, S. V., Luchinina, J. A., Galimova, A. Z. (2006) Enzymatic methods in food analysis: determination of ascorbic acid. Anal. Chim. Acta 573–574, 125–132.CrossRefGoogle Scholar
- 30.Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants. Annals Bot. 78, 661–669.CrossRefGoogle Scholar
- 31.Smirnoff, N. (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3, 229–235.CrossRefGoogle Scholar
- 32.Sommano, S., Caffin, N., McDonald, J., Kerven, G. (2011) Measurement of ascorbic acid in Australian native plants. IFRJ 18, 1017–1020.Google Scholar
- 33.Soni, H., Singhai, A. K., Sharma, S. (2012) Quantification of ascorbic acid in leaves of Annona squamosa. Int. J. Pharm. Pharm. Sci. 4, 144–147.Google Scholar
- 34.Soni, H., Singhai, A. K., Sharma, S., Nayak, G., Swarnkar, P. (2012) Quantification of ascorbic acid in salad components. Int. J. Curr. Pharm. Res. 4, 43–47.Google Scholar
- 35.Streb, P., Aubert, S., Gout, E., Bligny R. (2003) Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. J. Exp. Bot. 54, 405–418.CrossRefGoogle Scholar
- 36.Streb, P., Feierabend, J., Bligny, R. (1997) Resistance of photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20, 1030–1040.CrossRefGoogle Scholar
- 37.Szarka, A., Tomasskovics, B., Bánhegyi, G. (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483.CrossRefGoogle Scholar
- 38.Vermeir, S., Hertog, M. L., Schenk, A., Beullens, K., Nicolai, B. M., Lammertyn, J. (2008) Evaluation and optimization of high-throughput enzymatic assays for fast L-ascorbic acid quantification in fruit and vegetables. Anal. Chim. Acta 618, 94–101.CrossRefGoogle Scholar
- 39.Wingsle, G., Moritz, T. (1997) Analysis of ascorbate and dehydroascorbate in plant extracts by highresolution selected ion monitoring gas chromatography-mass spectrometry. J. Chromatogr. A782, 95–103.CrossRefGoogle Scholar
- 40.Yang, Y., Han, C., Liu, Q., Lin, B., Wang, J. (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol. Plant. 30, 433–440.CrossRefGoogle Scholar
- 41.Zhang, J., Kirkham, M. B. (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132, 361–373.CrossRefGoogle Scholar
- 42.Zhou, Y., Tao, Q. C., Wang, Z. N., Fan, R., Li, Y., Sun, X. F., Tang, K. X. (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol. Plant. 56, 451–457.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.