Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 2, pp 205–217 | Cite as

Routine Sample Preparation and HPLC Analysis for Ascorbic Acid (Vitamin C) Determination in Wheat Plants and Arabidopsis Leaf Tissues

  • Gabriella SzalaiEmail author
  • T. Janda
  • Magda Pál
Article

Abstract

Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

Keywords

Ascorbic acid HPLC analysis plant tissue stress UV detection 

Abbreviations

AA

ascorbic acid, reduced form

DHA

dehydroascorbic acid, oxidised form

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S. (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol. Plant. 51, 157–160.CrossRefGoogle Scholar
  2. 2.
    Arya, S. P., Mahajan, M., Jain, P. (2000) Non-spectrophotometric methods for determination of Vitamin C. Anal. Chim. Acta 417, 1–14.CrossRefGoogle Scholar
  3. 3.
    Attolico, A. D., De Tullio, M. C. (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol. Biochem. 44, 462–466.CrossRefGoogle Scholar
  4. 4.
    Bartoli, C. G., Pastori, G. M., Foyer, C. H. (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes II and IV. Plant Physiol. 123, 335–343.CrossRefGoogle Scholar
  5. 5.
    Chen, T. H. H., Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5, 250–257.CrossRefGoogle Scholar
  6. 6.
    Conklin, P. L., Williams, E. H., Last, R. L. (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant (ozone/ultraviolet B/sulfur dioxide/reactive oxygen detoxification/vitamin C). Proc. Natl. Acad. Sci USA 93, 9970–9974.CrossRefGoogle Scholar
  7. 7.
    Davey, M. W., Van Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., Fletcher, J. (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860.CrossRefGoogle Scholar
  8. 8.
    Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova Z. P., Feller, U. (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J. Plant Nutr. 29, 451–468.CrossRefGoogle Scholar
  9. 9.
    Fercha, A., Hocine, G., Mebarek, B. (2011) Improvement of salt tolerance in durum wheat by ascorbic acid application. J. Stress Physiol. Biochem. 7, 27–37.Google Scholar
  10. 10.
    Foyer, C. H., Noctor, G. (2005) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.CrossRefGoogle Scholar
  11. 11.
    Furusawa, N. (2001) Rapid high-performance liquid chromatographic identification/quantification of total vitamin C in fruit drinks. Food Control 12, 27–29.CrossRefGoogle Scholar
  12. 12.
    Gallie, D. R. (2013) l-Ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica, 2013, Article ID 795964.Google Scholar
  13. 13.
    Gazdik, Z., Zitka, O., Petrlova, J., Adam, V., Zehnalek, J., Horna, A., Reznicek, V., Beklova, M., Kizek, R. (2008) Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors 8, 7097–7112.CrossRefGoogle Scholar
  14. 14.
    Gest, N., Gautier, H., Stevens, R. (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64, 33–53.CrossRefGoogle Scholar
  15. 15.
    Karau, G. M., Njagi, E. N. M., Machocho, A. K., Wangai, L. N. (2012) Phytonutrient, mineral composition and in vitro antioxidant activity of leaf and stem bark powders of Pappea capensis (L.). Pak. J. Nutrition 11, 123–132.CrossRefGoogle Scholar
  16. 16.
    Khan, T. A., Mazid, M., Mohammad, F. (2012) Potential of ascorbic acid against oxidative burst in plants under biotic stress: A review. J. Ind. Res. & Technology 2, 72–80.Google Scholar
  17. 17.
    Kotchoni, S. O., Larrimore, K. E., Mukherjee, M., Kempinski, C. F., Barth, C. (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149, 803–815.CrossRefGoogle Scholar
  18. 18.
    Li, Q., Krauss, M. R. Hempfling, W. P. (2006) Wounding of root or basal stalk prior to harvest affects pre-harvest antioxidant accumulation and tobacco-specific nitrosamine formation during air curing of burley tobacco (Nicotiana tabacum L.). J. Agr. Crop Sci. 192, 267–277.CrossRefGoogle Scholar
  19. 19.
    Li, Q., Li, Y., Li, C., Yu, X. (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J. Genet. Plant Breed. 48, 74–86.CrossRefGoogle Scholar
  20. 20.
    López-Carbonell, M., Munné-Bosch, S., Alegre, L. (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J. Plant Growth Regul. 25, 137–144.CrossRefGoogle Scholar
  21. 21.
    Nayyar, H., Chander, S. (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agr. Crop Sci. 190, 355–365.CrossRefGoogle Scholar
  22. 22.
    Niu, Y., Wang, Y., Li, P., Zhang, F., Liu, H., Zheng, G. (2012) Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Acta Physiol. Plant. 35, 1189–1200.CrossRefGoogle Scholar
  23. 23.
    Novákova, L., Solich, P., Solichova, D. (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal. Chem. 27, 942–958.CrossRefGoogle Scholar
  24. 24.
    Panda, S. K., Khan, M. H. (2009) Growth, oxidative damage and antioxidant responses in Greengram (Vigna radiata L.) under short-term salinity stress and its recovery. J. Agr. Crop Sci. 195, 442–454.CrossRefGoogle Scholar
  25. 25.
    Pisoschi, A. M., Danet, A. F., Kalinowski, S. (2008) Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry. J. Autom. Methods Manag. Chem. 2008, Article ID 937651, doi:10.1155/2008/937651.Google Scholar
  26. 26.
    Prasad, B. B., Tiwari, K., Singh, M., Sharma, P. S., Patel, A. K., Srivastava, S. (2008) Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer- based sensor for ultratrace analysis of ascorbic acid. J. Chromatogr. A1198, 59–66.Google Scholar
  27. 27.
    Ribeiro, C., Cambraia, J., Peixoto, P. H. P., da Fonseca, J. É. M. (2012) Antioxidant system response induced by aluminum in two rice cultivars. Braz. J. Plant Physiol. 24, 107–116.CrossRefGoogle Scholar
  28. 28.
    Sawant, L., Prabhakar, B., Mahajan, A., Pai, N., Pandita, N. (2011) Development and validation of HPLC method for quantification of phytoconstituents in Phyllanthus emblica. J. Chem. Pharm. Res. 3, 937–944.Google Scholar
  29. 29.
    Shekhovtsova, T. N., Muginova, S. V., Luchinina, J. A., Galimova, A. Z. (2006) Enzymatic methods in food analysis: determination of ascorbic acid. Anal. Chim. Acta 573–574, 125–132.CrossRefGoogle Scholar
  30. 30.
    Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants. Annals Bot. 78, 661–669.CrossRefGoogle Scholar
  31. 31.
    Smirnoff, N. (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3, 229–235.CrossRefGoogle Scholar
  32. 32.
    Sommano, S., Caffin, N., McDonald, J., Kerven, G. (2011) Measurement of ascorbic acid in Australian native plants. IFRJ 18, 1017–1020.Google Scholar
  33. 33.
    Soni, H., Singhai, A. K., Sharma, S. (2012) Quantification of ascorbic acid in leaves of Annona squamosa. Int. J. Pharm. Pharm. Sci. 4, 144–147.Google Scholar
  34. 34.
    Soni, H., Singhai, A. K., Sharma, S., Nayak, G., Swarnkar, P. (2012) Quantification of ascorbic acid in salad components. Int. J. Curr. Pharm. Res. 4, 43–47.Google Scholar
  35. 35.
    Streb, P., Aubert, S., Gout, E., Bligny R. (2003) Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. J. Exp. Bot. 54, 405–418.CrossRefGoogle Scholar
  36. 36.
    Streb, P., Feierabend, J., Bligny, R. (1997) Resistance of photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20, 1030–1040.CrossRefGoogle Scholar
  37. 37.
    Szarka, A., Tomasskovics, B., Bánhegyi, G. (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483.CrossRefGoogle Scholar
  38. 38.
    Vermeir, S., Hertog, M. L., Schenk, A., Beullens, K., Nicolai, B. M., Lammertyn, J. (2008) Evaluation and optimization of high-throughput enzymatic assays for fast L-ascorbic acid quantification in fruit and vegetables. Anal. Chim. Acta 618, 94–101.CrossRefGoogle Scholar
  39. 39.
    Wingsle, G., Moritz, T. (1997) Analysis of ascorbate and dehydroascorbate in plant extracts by highresolution selected ion monitoring gas chromatography-mass spectrometry. J. Chromatogr. A782, 95–103.CrossRefGoogle Scholar
  40. 40.
    Yang, Y., Han, C., Liu, Q., Lin, B., Wang, J. (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol. Plant. 30, 433–440.CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Kirkham, M. B. (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132, 361–373.CrossRefGoogle Scholar
  42. 42.
    Zhou, Y., Tao, Q. C., Wang, Z. N., Fan, R., Li, Y., Sun, X. F., Tang, K. X. (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol. Plant. 56, 451–457.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Plant Physiology, Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations