Biomass Derived from Transgenic Tobacco Expressing the Arabidopsis CESA3ixr1—2 Gene Exhibits Improved Saccharification

Abstract

Studies in Arabidopsis thaliana and Nicotiana tabacum L. variety Samsun NN demonstrated that expression of the CESA3 cellulose synthase gene that contains a point mutation, named ixr1–2, results in greater conversion of plant-derived cellulose to fermentable sugars. The present study was designed to examine the improved enzymatic saccharification efficiency of lignocellulosic biomass of tobacco plants expressing AtCESA3ixr1–2. Three-month-old AtCESA3ixr1–2 transgenic and wild-type tobacco plants (Nicotiana tabacum L. variety Samsun NN) were grown in the presence and absence of isoxaben. Biomass obtained from leaf, stem, and root tissues were analyzed for enzymatic saccharification rates. During enzymatic saccharification, 45% and 25% more sugar was released from transgenic leaf and stem samples, respectively, when compared to the wild-type samples. This gain in saccharification efficiency was achieved without chemical or heat pretreatment. Additionally, leaf and stem biomass from transgenic AtCESA3ixr1–2 requires a reduced amount of enzyme for saccharification compared to biomass from wild-type plants. From a practical standpoint, a similar strategy could be employed to introduce the mutated CESA into energy crops like poplar and switchgrass to improve the efficiency of biomass conversion.

References

  1. 1.

    Ambavaram, M. M., Krishnan, A., Trijatmiko, K. R., Pereira, A. (2011) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol. 155, 916–931.

    CAS  Article  Google Scholar 

  2. 2.

    Andrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A., Dixon, J., Spitsin, S., Flynn, J., Matyszczuk, P., Andryszak, K., Laurelli, M., Golovkin, M., Koprowski, H. (2009) Tobacco as a pro bduction platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 8, 1–11.

    Google Scholar 

  3. 3.

    Banerjee, J., Sahoo, D. K., Dey, N., Houtz, R. L., Maiti, I. B. (2013) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants. PLoS One 8(11), e79622. doi:10.1371/journal.pone.0079622.

    Article  Google Scholar 

  4. 4.

    Brunecky, R., Selig, M. J., Vinzant, T. B., Himmel, M. E., Lee, D., Blaylock, M. J., Decker, S. R. (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol. Biofuels 4, 1.

    CAS  Article  Google Scholar 

  5. 5.

    Chapple, C., Ladisch, M., Meilan, R. (2007) Loosening lignin’s grip on biofuel production. Nat. Biotechnol. 25(7), 746–748.

    CAS  Article  Google Scholar 

  6. 6.

    Chen, F., Dixon, R. A. (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25(7), 759–761.

    CAS  Article  Google Scholar 

  7. 7.

    Chuck, G. S., Tobias, C., Sun, L., Kraemer, F., Li, C., Dibble, D., Arora, R., Bragg, J. N., Vogel, J. P., Singh, S., Simmons, B. A., Pauly, M., Hake, S. (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc. Natl. Acad. Sci. USA 108(42), 17550–17555.

    CAS  Article  Google Scholar 

  8. 8.

    Desprez, T., Juraniec, M., Crowell, E. F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M., Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 104, 15572–15577.

    CAS  Article  Google Scholar 

  9. 9.

    Harris, D. M., Corbin, K., Wang, T., Gutierrez, R., Bertolo, A. L., Petti, C., Smilgies, D. M., Estevez, J. M., Bonetta, D., Urbanowicz, B. R., Ehrhardt, D., Somerville, C. R., Rose, J. K. C., Hong, M., DeBolt, S. (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmem brane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc. Natl. Acad. Sci. USA 109, 4098–4103.

    CAS  Article  Google Scholar 

  10. 10.

    Harris, D., DeBolt, S. (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol. J. 8, 244–262.

    CAS  Article  Google Scholar 

  11. 11.

    Harris, D., Stork, J., DeBolt, S. (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1, 51–61.

    CAS  Article  Google Scholar 

  12. 12.

    Heinzelman, P., Snow, C. D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., Arnold, F. H. (2009) A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA 106(14), 5610–5615.

    CAS  Article  Google Scholar 

  13. 13.

    Hématy, K., Höfte, H. (2006) Cellulose and cell elongation. Plant Cell Monograph 5, 33–56.

    Google Scholar 

  14. 14.

    Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., Foust, T. D. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807.

    CAS  Article  Google Scholar 

  15. 15.

    Kroumova, A. B., Sahoo, D. K., Raha, S., Goodin, M., Maiti, I. B., Wagner, G. J. (2013) Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Rep. 32, 1771–1782.

    CAS  Article  Google Scholar 

  16. 16.

    Kumar, D., Patro, S., Ranjan, R., Sahoo, D. K., Maiti, I. B., Dey, N. (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 6(9), e24627. doi:10.1371/journal.pone.0024627.

    CAS  Article  Google Scholar 

  17. 17.

    Lee, D., Yu, A. H. C., Wong, K. K. Y., Saddler, J. N. (1994) Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl. Biochem. Biotechnol. 45/46, 407–415.

    Article  Google Scholar 

  18. 18.

    Liu, W., Hong, J., Bevan, D. R., Zhang, Y. H. P. (2009) Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnol. Bioeng. 103, 1087–1094.

    CAS  Article  Google Scholar 

  19. 19.

    Mosier, N., Wyman, C. E., Dale, B. E., Elander, R. T., Lee, Y. Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686.

    CAS  Article  Google Scholar 

  20. 20.

    Ralph, J., Akiyama, T., Kim, H., Lu, F., Schatz, P. F., Marita, J. M., Ralph, S. A., Reddy, M. S. S., Chen, F., Dixon, R. A. (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J. Biol. Chem. 281, 8843–8853.

    CAS  Article  Google Scholar 

  21. 21.

    Reiter, W. D., Chapple, C. C. S., Somerville, C. R. (1993) Altered growth and cell walls in a fucosedeficient mutant of Arabidopsis. Science 261, 1032–1035.

    CAS  PubMed  Google Scholar 

  22. 22.

    Rollin, J. A., Zhu, Z., Sathitsuksanoh, N., Zhang, Y. H. P. (2011) Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol. Bioeng. 108, 22–30.

    CAS  Article  Google Scholar 

  23. 23.

    Sahoo, D. K., Ranjan, R., Kumar, D., Kumar, A., Sahoo, B. S., Raha, S., Maiti, I. B., Dey, N. (2009) An alternative method of promoter assessment by confocal laser scanning microscopy. J. Virol. Methods 161, 114–121.

    CAS  Article  Google Scholar 

  24. 24.

    Sahoo, D. K., Stork, J., Debolt, S., Maiti, I. B. (2013) Manipulating cellulose biosynthesis by expression of mutant Arabidopsis proM24::CESA3(ixr1–2) gene in transgenic tobacco. Plant Biotechnol. J. 11, 362–372.

    CAS  Article  Google Scholar 

  25. 25.

    Sathitsuksanoh, N., Zhu, Z., Ho, T. J., Bai, M. D., Zhang, Y. H. P. (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Biores. Technology 101, 4926–4929.

    CAS  Article  Google Scholar 

  26. 26.

    Sathitsuksanoh, N., Zhu, Z., Templeton, N., Rollin, J., Harvey, S., Zhang, Y. H. P. (2009) Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind. Eng. Chem. Res. 48, 6441–6447.

    CAS  Article  Google Scholar 

  27. 27.

    Scheller, H. V., Ulvskov, P. (2010) Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289.

    CAS  Article  Google Scholar 

  28. 28.

    Schillberg, S., Fischer, R., Emans, N. (2003) Molecular farming of antibodies in plants. Naturwissenschaften 90, 145–155.

    CAS  PubMed  Google Scholar 

  29. 29.

    Scott, T. A., Melvin, E. H. (1953) The determination of dextran with anthrone. Anal. Chem. 25, 1656–1661.

    CAS  Article  Google Scholar 

  30. 30.

    Somerville, C. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell. Dev. Biol. 22, 53–78.

    CAS  Article  Google Scholar 

  31. 31.

    Sticklen, M. (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17(3), 315–319.

    CAS  Article  Google Scholar 

  32. 32.

    Tu, M., Chandra, R. P., Saddler, J. N. (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol. Prog. 23(2), 398–406.

    CAS  Article  Google Scholar 

  33. 33.

    Updegraff, D. M. (1969) Semimicro determination of cellulose in biological materials. Anal. Biochem. 32(3), 420–424.

    CAS  Article  Google Scholar 

  34. 34.

    Wyman, C. E. (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25(4), 153–157.

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, Y. H., Cui, J., Lynd, L. R., Kuang, L. R. (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7(2), 644–648.

    CAS  Article  Google Scholar 

  36. 36.

    Zhu, Z., Sathitsuksanoh, N., Zhang, Y. H. P. (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134 (11), 2267–2272.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipak Kumar Sahoo.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahoo, D.K., Maiti, I.B. Biomass Derived from Transgenic Tobacco Expressing the Arabidopsis CESA3ixr1—2 Gene Exhibits Improved Saccharification. BIOLOGIA FUTURA 65, 189–204 (2014). https://doi.org/10.1556/ABiol.65.2014.2.7

Download citation

Keywords

  • Nicotiana tabacum
  • biofuel
  • biomass
  • AtCESA3 ixr1—2