Acta Biologica Hungarica

, Volume 65, Issue 2, pp 165–177 | Cite as

Growth Regulator Requirement for In Vitro Embryogenic Cultures of Snowdrop (Galanthus Nivalis L.) Suitable for Germplasm Preservation

  • Anna Resetár
  • Zita Demeter
  • Emese Ficsor
  • Andrea Balázs
  • Ágnes Mosolygó
  • Éva Szőke
  • S. Gonda
  • L. Pap
  • G. Surányi
  • C. MáthéEmail author


In this study, we report on the production of bulb scale-derived tissue cultures capable of efficient shoot and plant regeneration in three genotypes of snowdrop (Galanthus nivalis L., Amaryllidaceae), a protected ornamental plant. For culture line A, high auxin and low cytokinin concentration is required for callus production and plant regeneration. The type of auxin is of key importance: α-naphthaleneacetic acid (NA) in combination with indole-3-acetic acid (IA) at concentrations of 2 mg L–1 or 2–10 mg L–1 NA with 1 mg L–1 N6-benzyladenine (BA), a cytokinin on full-strength media are required for regeneration. Cultures showing regeneration were embryogenic. When lines B and C were induced and maintained with 2 mg L–1 NA and 1 mg L–1 BA, they produced mature bulblets with shoots, without roots. Line A produced immature bulblets with shoots under the above culture condition. Amplified Fragment Length Polymorphism (AFLP) analysis showed that (i) genetic differences between line A and its bulb explants were not significant, therefore these tissue cultures are suitable for germplasm preservation, and (ii) different morphogenetic responses of lines A, B and C originated from genetic differences. Culture line A is suitable for field-growing, cultivation and germplasm preservation of G. nivalis and for the production of Amaryllidaceae alkaloids.


Galanthus nivalis bulb callus somatic embryogenesis plant regeneration germplasm preservation 



ascorbic acid


Amplified Fragment Length Polymorphism




casein hydrolysate


indole-3-acetic acid


indole-3-butyric acid

MS medium

Murashige-Skoog medium


α-naphthaleneacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augustine, A. C., Nivas, S., D’Souza, L. (2008) Induction of embryos and plantlets of Curculigo orchioides Gaertn.–an endangered medicinal herb. Indian J. Biotechnol. 7, 536–540.Google Scholar
  2. 2.
    Benner, M. S., Braunstein, M. D., Weisberg, M. U. (1995) Detection of DNA polymorphisms within the genus Cattleya (Orchidaceae). Plant Mol. Biol. Rep. 13, 147–155.CrossRefGoogle Scholar
  3. 3.
    Blazquez, S., Olmos, E., Hernández, J. A., Fernández-Garcia, N., Fernandez, J. A., Piqueras, A. (2009) Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tiss. Organ Cult. 97, 49–57.CrossRefGoogle Scholar
  4. 4.
    Coe, G. E. (1953) Cytology of reproduction in Cooperia pedunculata. Am. J. Bot. 40, 335–343.CrossRefGoogle Scholar
  5. 5.
    Demeter, Z., Surányi, G., Molnár, V. A., Sramkó, G., Beyer, D., Kónya, Z., Vasas, G., M-Hamvas, M., Máthé, C. (2010) Somatic embryogenesis and regeneration from shoot primordia of Crocus heuffelianus. Plant Cell Tiss. Organ Cult. 100, 349–353.CrossRefGoogle Scholar
  6. 6.
    Dimitrov, D., Kurteva, M., Zahriev, D. (2012) Flora and vegetation of the Dervisha Managed Reserve, Bulgaria. Phytol. Balcan. 18, 49–57.Google Scholar
  7. 7.
    Dodds, J. H., Roberts, L. W. (1986) Experiments in Plant Tissue Culture. Cambridge University Press, Cambridge–London–New York–New Rochelle–Melbourne–Sydney.Google Scholar
  8. 8.
    Duncan, D. R., Williams, M. E., Zehr, B. E., Widholm, J. M. (1985) The production of callus capable of plant regeneration from immature embryos of numerousZea mays genotypes. Planta 165, 322–332.Google Scholar
  9. 9.
    El Tahchy, A., Bordage, S., Ptak, A., Dupire, F., Barre, E., Guillou, C., Henry, M., Chapleur, Y., Laurain-Mattar, D. (2011) Effects of sucrose and plant growth regulators on acetylcholinesterase inhibitory activity of alkaloids accumulated in shoot cultures of Amaryllidaceae. Plant Cell Tiss. Organ Cult. 106, 381–390.CrossRefGoogle Scholar
  10. 10.
    Gahan, P. B., George, E. F. (2008) Adventitious regeneration. In: George, E. F., Hall, M. A., De Klerk, G.-J. (eds) Plant Propagation by Tissue Culture, Vol. 1: The Background. Springer, Dordrecht, pp. 355–401.Google Scholar
  11. 11.
    Gamborg, O. L., Miller, R. A., Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.CrossRefGoogle Scholar
  12. 12.
    George, E. F., Davies, W. (2008) Effects of the physical environment. In: George, E. F., Hall, M. A., De Klerk, G.-J. (eds) Plant Propagation by Tissue Culture, Vol. 1: The Background. Springer, Dordrecht, pp. 423–464.Google Scholar
  13. 13.
    George, E. F., Hall, M. A., De Klerk, G.-J. (eds) (2008) Plant Propagation by Tissue Culture, Vol. 1: The Background. Springer, Dordrecht.Google Scholar
  14. 14.
    Ilczuk, A., Winkelmann, T., Richartz, S., Witomska, M., Serek, M. (2005) In vitro propagation of Hippeastrum x chmielii Chm.–influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tiss. Organ Cult. 83, 339–346.CrossRefGoogle Scholar
  15. 15.
    Király, G. (ed.) (2007) A magyarországi edényes flóra veszélyeztetett fajai/Red List of the Vascular Flora in Hungary. Lővér Print, Sopron, Hungary, pp. 55–58.Google Scholar
  16. 16.
    Laguna, E., Deltoro, V. I., Pèrez-Botella, J., Pèrez-Rovira, P., Serra, Ll., Olivares, A., Fabregat, C. (2004) The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biol. Conserv. 119, 421–426.CrossRefGoogle Scholar
  17. 17.
    Máthé, C., Mosolygó, A., Surányi, G., Beke, A., Demeter, Z., Tóth, V. R., Beyer, D., Mészáros, I., M-Hamvas, M. (2012) Genotype and explant-type dependent morphogenesis and silicon response of common reed (Phragmites australis) tissue cultures. Aquat. Bot. 97, 57–64.CrossRefGoogle Scholar
  18. 18.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.CrossRefGoogle Scholar
  19. 19.
    Pelkonen, V.-P., Kauppi, A. (1999) The effect of light and auxins on the regeneration of lily (Lilium regale Wil.) cells by somatic embryogenesis and organogenesis. Int. J. Plant Sci. 160, 483–490.CrossRefGoogle Scholar
  20. 20.
    Preece, J. (2008) Stock plant physiological factors affecting growth and morphogenesis, In: George, E. F., Hall, M. A., De Klerk, G.-J. (eds) Plant Propagation by Tissue Culture, Vol. 1: The Background. Springer, Dordrecht, pp. 403–422.Google Scholar
  21. 21.
    Ptak, A., El Tahchy, A., Wyżgolik, G., Henry, M., Laurain-Mattar, D. (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tiss. Organ Cult. 102, 61–67.CrossRefGoogle Scholar
  22. 22.
    Razdan, M. K. (2003) Introduction to Plant Tissue Culture. Science Publishers, Inc., Enfield–Plymouth, pp. 71–84.Google Scholar
  23. 23.
    Sage, D. O., Lynn, J., Hammatt, N. (2000) Somatic embryogenesis of Narcissus pseudonarcissus cvs. Golden Harvest and St. Keverne. Plant Sci. 150, 209–216.CrossRefGoogle Scholar
  24. 24.
    Staikidou, I., Selby, C., Hanks, G. R. (2006) Development of a medium for in vitro culture of Galanthus species based on the mineral composition of bulbs. J. Hortic. Sci. Biotech. 81, 537–545.CrossRefGoogle Scholar
  25. 25.
    Staikidou, I., Selby, C. (2012) Effects of growth regulators and activated charcoal on in vitro bulblet multification and growth in Galanthus nivalis “Flore Pleno”. J. Hortic. Sci. Biotech. 87, 527–530.CrossRefGoogle Scholar
  26. 26.
    Tilly-Mándy, A., Jámbor-Benczúr, E., Szabó, J. (2006) Results with the micropropagation of Galanthus elwesii and Galanthus nivalis “Flore Pleno”. Acta Horticulturae 725, 439–444.CrossRefGoogle Scholar
  27. 27.
    Vishnevetsky, J., Zamski, E., Ziv, M. (2003) Enhanced bud and bulblet regeneration from bulbs of Nerine sarniensis cultured in vitro. Plant Cell Rep. 21, 645–650.PubMedGoogle Scholar
  28. 28.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, Th., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.CrossRefGoogle Scholar
  29. 29.
    Weryszko-Chmielewska, E., Chwil, M. (2010) Ecological adaptations of the floral structures of Galanthus nivalis L. Acta Agrobotanica 63, 41–49.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Anna Resetár
    • 1
  • Zita Demeter
    • 1
  • Emese Ficsor
    • 2
  • Andrea Balázs
    • 2
  • Ágnes Mosolygó
    • 1
  • Éva Szőke
    • 2
  • S. Gonda
    • 1
  • L. Pap
    • 3
  • G. Surányi
    • 1
  • C. Máthé
    • 1
    Email author
  1. 1.Department of Botany, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of PharmacognosySemmelweis UniversityBudapestHungary
  3. 3.Botanical GardenUniversity of DebrecenDebrecenHungary

Personalised recommendations