Acta Biologica Hungarica

, Volume 65, Issue 2, pp 144–155 | Cite as

Polyphenol Composition and Antioxidant Capacity from Different Extracts of Aster Scaber

  • M. Thiruvengadam
  • N. Praveen
  • B. R. Yu
  • S. H. Kim
  • I. M. ChungEmail author


Phenolic contents and antioxidant capacities from different solvent extracts (petroleum ether, ethyl acetate, methanol, butanol and water) of Aster scaber leaf were investigated. Antioxidant activity was evaluated by three different methods, namely DPPH radical scavenging activity, reducing power assay and phosphomolybdenum activity. A total of twenty-three polyphenolic compounds were identified and quantified from A. scaber leaf extracts, including hydroxybenzoic acids, hydroxycinnamic acids, flavonols and other groups of phenolic compounds. Ultra high performance liquid chromatography (UHPLC) analysis of the leaf extract revealed that myricetin (4850.45 μg/g) was the most dominant flavonols, compared to quercetin and kaempferol. Caffeic acid was the dominant phenolic compound in A. scaber leaf extracts, it constituted about 104.20 μg/g, followed by gentisic acid (84.50 μg/g), gallic acid (61.05 μg/g) and homogentisic acid (55.65 μg/g). The total phenolic and flavonoid content was the highest in ethyl acetate extract (322.43 and 6.51 mg/g). The decreasing order of antioxidant activity among the A. scaber leaf extracts assayed through all the three methods was found to be ethyl acetate > butanol > methanol > petroleum ether > water extract.


Leafy vegetables Aster scaber antioxidant activity phenolic compounds flavonoids 



butylated hydroxytoluene




gallic acid equivalents


quercetin equivalents


ultra high performance liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, B. N., Shigenaga, M. K., Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915–7922.CrossRefGoogle Scholar
  2. 2.
    Bhat, R., Liong, M. T., Abdorreza, M. N., Karim, A. A. (2013) Evaluation of free radical scavenging activity and antioxidant potential of a few popular green leafy vegetables of Malaysia. International J. Food Properties 16, 1371–1379.CrossRefGoogle Scholar
  3. 3.
    Cai, Y., Luo, O., Sun, M., Corke, H. (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184.CrossRefGoogle Scholar
  4. 4.
    Cao, G., Sofic, E., Prior, R. L. (1997) Antioxidant and pro-oxidant behavior of flavonoids: Structure activity relationships. Free Radic. Biol. Med. 22, 749–760.CrossRefGoogle Scholar
  5. 5.
    Cook, N. C., Samman, S. (1996) Flavonoids–chemistry, metabolism, cardio protective effects, and dietary sources. Nutr. Biochem. 7, 66–76.CrossRefGoogle Scholar
  6. 6.
    Di Matteo, V., Esposito, E. (2003) Biochemical and therapeutic effects of antioxidants in the treatment of Alzeimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord. 2, 95–107.CrossRefGoogle Scholar
  7. 7.
    Gerber, M., Boutron-Ruault, M. C., Hercberg, S., Riboli, E., Scalbert, A., Siess, M. H. (2002) Food and cancer: state of the art about the protective effect of fruits and vegetables. Bulletin du Cancer 89, 293–312.PubMedGoogle Scholar
  8. 8.
    Gordon, M. H. (1990) The mechanism of the antioxidant action in vitro. In: Hudson, B. J. F. (ed.) Food Antioxidants. Elsevier, London, pp. 1–18.Google Scholar
  9. 9.
    Gul, M. Z., Ahmad, F., Kondapi, A. K., Qureshi, I. A., Ghazi, I. A. (2013) Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts–an in vitro study. BMC Complement Altern. Med., 13 53–64.CrossRefGoogle Scholar
  10. 10.
    Huang, S. J., Mau, J. L. (2006) Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of γ-irradiation. LWT-Food Sci. Technol. 39, 707–716.CrossRefGoogle Scholar
  11. 11.
    Jiang, Y., Hu, W., Lee, K. C., Wang, M. H. (2013) Antioxidant and anti-inflammatory activities of different solvent fractions from ethanol extract of Synurus deltoides (Aiton) Nakai leaves. Food Sci. Biotechnol. 22, 215–223.CrossRefGoogle Scholar
  12. 12.
    Jung, C. M., Kwon, H. C., Seo, J. J., Ohizumi, Y., Matsunaga, K., Saito, S., Lee, K. R. (2001) Two new monoterpene peroxide glycosides from Aster scaber. Chem. Pharm. Bull. 49, 912–914.CrossRefGoogle Scholar
  13. 13.
    Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., Heinonen, M. (1999) Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47, 3954–3962.CrossRefGoogle Scholar
  14. 14.
    Katerere, D. R., Eloff, J. N. (2005) Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed Anti-HIV/AIDS phytomedicine. Phyto. Res. 19, 779–781.CrossRefGoogle Scholar
  15. 15.
    Kim, C. M., Sin, M. K., An, T. K., Lee, K. S. (1997) Dictionary of Chinese Herbs. Jung Dam Publisher, Seoul, Korea, p. 1431.Google Scholar
  16. 16.
    Kumpulainen, J. T., Salonen, J. T. (1999) Natural Antioxidants and Anti-carcinogens in Nutrition, Health and Disease. The Royal Society of Chemistry, UK, pp. 178–187.Google Scholar
  17. 17.
    Kwon, H. C., Jung, C. M., Shin, C. G., Lee, J. K., Choi, S. U., Kim, S. Y., Lee, K. R. (2000) A new caffeoyl quinic acid from Aster scaber and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Chem. Pharm. Bull. (Tokyo) 48, 1796–1798.CrossRefGoogle Scholar
  18. 18.
    Oyaizu, M. (1986) Studies on products of browning reactions: antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307–315.CrossRefGoogle Scholar
  19. 19.
    Pin-Der-Duh, X. (1998) Antioxidant activity of burdock (Arctium lappa L): its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75, 455–461.CrossRefGoogle Scholar
  20. 20.
    Pourmorad, F., Hosseinimehr, S. J., Shahabimajd, N. (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5, 1142–1145.Google Scholar
  21. 21.
    Prieto, P., Pineda, M., Aguilar, M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analyt. Biochem. 269, 337–341.CrossRefGoogle Scholar
  22. 22.
    Ross, J., Kasum, C. (2002) Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19–34.CrossRefGoogle Scholar
  23. 23.
    Serafini, M., Bellocco, R., Wolk, A., Ekstrom, A. M. (2002) Total antioxidant potential of fruit and vegetables and risk of gastric cancer. Gastroenterology 123, 985–991.CrossRefGoogle Scholar
  24. 24.
    Singleton, V. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 37, 144–158.Google Scholar
  25. 25.
    Subhasree, B., Baskar, R., Keerthana, R. L., Susan, R. L., Rajasekaran, P. (2009) Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem. 115, 1213–1220.CrossRefGoogle Scholar
  26. 26.
    Tiwari, A. K. (2001) Imbalance in antioxidant defense and human diseases: Multiple approach of natural antioxidants therapy. Curr. Sci. 81, 1179–1187.Google Scholar
  27. 27.
    Waladkhani, A., Clemens, M. R. (1998) Effect of dietary phytochemicals on cancer development. Int. J. Mol. Med. 1, 747–753.PubMedGoogle Scholar
  28. 28.
    Wang, H., Nair, M. G., Strasburg, G. M., Booren, A. M., Gray, J. I. (1999) Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem. 47, 840–844.CrossRefGoogle Scholar
  29. 29.
    Wangensteen, H., Samuelsen, A. B., Malterud, K. E. (2004) Antioxidant activity in extracts from coriander. Food Chem. 88, 293–297.CrossRefGoogle Scholar
  30. 30.
    Willet, W. C. (2002) Balancing life-style and genomics research for disease prevention. Science 296, 695–698.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Thiruvengadam
    • 1
  • N. Praveen
    • 1
  • B. R. Yu
    • 1
  • S. H. Kim
    • 1
  • I. M. Chung
    • 1
    Email author
  1. 1.Department of Applied Bioscience, College of Life and Environmental ScienceKonkuk UniversitySeoulSouth Korea

Personalised recommendations