Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 1, pp 96–106 | Cite as

Leaf Litter Decomposition in Torna Stream before and after a Red Mud Disaster

  • T. KucserkaEmail author
  • Kata Karádi-Kovács
  • M. Vass
  • G. B. Selmeczy
  • Katalin Eszter Hubai
  • Viktória Üveges
  • I. Kacsala
  • N. Törő
  • Judit Padisák
Article

Abstract

The aim of the study was to estimate the breakdown of the allochthonous litter in an artificial stream running in an agricultural area and compare it with the same values following a toxic mud spill into the same stream. Litter bags were filled with three types of leaves (Quercus robur, Populus tremula and Salix alba) and placed to the bottom of the river. Ergosterol was used to detect fungal biomass. We supposed the absence of fungi and the retardation of leaf litter decomposition. Only pH and conductivity increased significantly. Leaf mass loss after the catastrophe was much slower than in 2009 and the decay curves did not follow the exponential decay model. Prior to the catastrophe, leaf mass loss was fast in Torna, compared to other streams in the area. The reason is that the stream is modified, the bed is trapezoid and covered with concrete stones. Fungal biomass was lower, than in the pre-disaster experiment, because fungi did not have enough leaves to sporulate. Leaf mass loss followed the exponential decay curve before the disaster, but after that it was possible only after a non-change period.

Keywords

Red mud disaster leaf litter decomposition ergosterol fungal biomass leaf mass loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelho, M. (2001) From litterfall to breakdown in streams: a review. Sci. World J. 1, 656–680.CrossRefGoogle Scholar
  2. 2.
    APHA - American Public Health Association (1998) Standard Methods for the Examination of Water and Wastewater. 20th Edition. United Book Press, Inc., Baltimore, Maryland, USA.Google Scholar
  3. 3.
    Axelsson, B. O., Saraf A., Larsson, L. (1995) Determination of ergosterol in organic dust by gas chromatography-mass spectrometry. J. Chromat. B 666, 77–84.CrossRefGoogle Scholar
  4. 4.
    Bärlocher, F., Kendrick, B. (1981) Role of Aquatic Hyphomycetes in the Trophic Structure of Streams. The Fungal Community: Its Organization and Role in the Ecosystem, Marcel Dekker, New York.Google Scholar
  5. 5.
    Bärlocher, F., Rosset, J. (1981) Aquatic hyphomycete spora of two Black Forest and two Swiss Jura streams. Trans. Brit. Mycol. Soc. 76, 479–483.CrossRefGoogle Scholar
  6. 6.
    Bärlocher, F. (2005) Leaf mass loss estimated by litter bag technique In: Graça, M. A. S., Bärlocher, F., Gessner, M. O. (eds) Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht, The Netherlands, pp. 37–42.CrossRefGoogle Scholar
  7. 7.
    Berke, J., Bíró, T., Burai, P., Kováts, L. D., Kozma-Bognár, V., Nagy, T., Tomor, T., Németh, T. (2013) Application of remote sensing in the red mud environmental disaster in Hungary. Carpathian J. Earth Environ. Sci. 8, 49–54.Google Scholar
  8. 8.
    Boulton, A. J., Boon, P. I. (1991) A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust. J. Mar. Freshwater Res. 42, 1–43.CrossRefGoogle Scholar
  9. 9.
    Dangles, O., Chauvet, E. (2003) Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Res. 37, 533–538.CrossRefGoogle Scholar
  10. 10.
    Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities.Google Scholar
  11. 11.
    Dubey, T., Stephenson, S. L., Edwards, P. J. (1994) Effect of pH on the distribution and occurrence of aquatic fungi in 6 West-Virginia Mountain streams. J. Environ. Qual. 23, 1271–1279.CrossRefGoogle Scholar
  12. 12.
    Gessner, M. O. (2005) Ergosterol as a measure of fungal biomass. In: Graça, M. A. S., Bärlocher, F., Gessner, M. O. (eds) Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht, The Netherlands, pp. 189–196.CrossRefGoogle Scholar
  13. 13.
    Gessner, M. O., Robinson, C. T., Ward, J. V. (1998) Leaf breakdown in streams of an Alpine glacial floodplain: dynamics of fungi and nutrients. J. North Amer. Benthol. Soc. 17, 403–419.CrossRefGoogle Scholar
  14. 14.
    Gessner, M. O. (2001) Mass loss, fungal colonization and nutrient dynamics of Phragmitesaustralis leaves during senescence and early aerial decay. Aquatic Bot. 69, 325–339.CrossRefGoogle Scholar
  15. 15.
    Gessner, M. O., Chauvet. E. (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75, 1807–1817.CrossRefGoogle Scholar
  16. 16.
    Gessner, M. O., Chauvet, E. (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl. Environ. Microbiol. 59, 502–507.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gessner, M. O., Chauvet, E. (1997) Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol. & Oceanography 42, 496–505.CrossRefGoogle Scholar
  18. 18.
    Graça, M. A. S., Canhoto, C. (2006) Leaf litter processing in low order streams. Limnetica 25, 1–10.Google Scholar
  19. 19.
    Groom, A. P., Hildrew. A. G. (1989) Food quality for detritivores in streams of contrasting pH. J. Anim. Ecol. 58, 863–881.CrossRefGoogle Scholar
  20. 20.
    Heartsill-Scalley, T., Aide, T. M. (2003) Riparian vegetation and stream condition in a tropical agriculture-secondary forest mosaic. Ecol. Appl. 13, 225–234.CrossRefGoogle Scholar
  21. 21.
    Hladyz, S., Tiegs, S. D., Gessner, M. O., Giller, P. S., Rîsnoveanu, G., Preda, E., Nistorescu, M., Schindler, M., Woodward, G. (2009) Leaf-litter breakdown in pasture and deciduous woodland streams: a comparison among three European regions. Freshwater Biol. 55, 1916–1929.CrossRefGoogle Scholar
  22. 22.
    Kallis, G., Butler, D. (2001) The EU water framework directive: measures and implications. Water Policy 3, 125–142.CrossRefGoogle Scholar
  23. 23.
    Kovács, Cs., Kahlert, M., Padisák, J. (2006) Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. J. Appl. Phycol. 18, 105–117.CrossRefGoogle Scholar
  24. 24.
    Kovács, K., Selmeczy, G. B., Kucserka, T., Nassr-Allah Abdel-Hameid, H., Padisák, J. (2011) The effect of stream bed morphology on shredders’ abundance and leaf-litter decomposition in Hungarian midland streams. Pol. Environ. Stud. 20, 1547–1556.Google Scholar
  25. 25.
    Langhans, S. D., Tiegs, S. D., Gessner, M. O., Tockner, K. (2008) Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sci. 70, 337–346.CrossRefGoogle Scholar
  26. 26.
    Markus, H., Gessner, M. O. (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90, 1641–1649.CrossRefGoogle Scholar
  27. 27.
    Newell, S. Y. (1992) Estimating fungal bomass and productivity in decomposing litter. In: Carroll, G. C., Wicklow, D. T. (eds) The Fungal Community. Its Organisation and Role in the Ecosystem. Marcel Dekker, New York, pp. 521–561.Google Scholar
  28. 28.
    Rosset, J., Bärlocher, F. (1985) Aquatic hyphomycetes. Trans. Brit. Mycol. Soc. 84, 137–145.CrossRefGoogle Scholar
  29. 29.
    Suberkropp, K. (2001) Fungal growth, production and sporulation during leaf decoposition of two streams. Appl. Environ. Microbiol. 67, 5063–5068.CrossRefGoogle Scholar
  30. 30.
    Szilágyi, F., Ács, É., Borics, G., Halasi-Kovács, B., Juhász, P., Kiss, B., Kovács, T., Müller, Z., Lakatos, G., Padisák, J., Pomogyi, P., Stenger-Kovács, C., Szabó, K. É., Szalma, E., Tóthmérész, B. (2008) Application of Water Framework Directive in Hungary: Development of biological classification systems. Water Sci. Technol. 58, 2117–2125.CrossRefGoogle Scholar
  31. 31.
    Tuchman, N. C., King, R. H. (1993) Changes in mechanisms of summern detritus processing between wooded and agricultural sites in a Michigan headwater stream. Hydrobiologia 268, 115–127.CrossRefGoogle Scholar
  32. 32.
    Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J. A., Sevanto, S., Liski, J. (2009) Leaf litter decomposition-Estimates of global variability based on Yasso07 model. Ecol. Modelling 220, 3362–3371.CrossRefGoogle Scholar
  33. 33.
    Üveges, V., Padisák, J. (2012) Photosynthetic activity of epilithic algal communities in sections of the Torna stream (Hungary) with naturaland modified riparian shading. Hydrobiologia 679, 267–281.CrossRefGoogle Scholar
  34. 34.
    Van den Bossche, H. (1990) Importance of sterols in fungal membranes. In: Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W., Copping, L. G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag, Berlin, pp. 135–157.CrossRefGoogle Scholar
  35. 35.
    Webster, J. R., Waide, J. B. (1982) Effects of forest clearcutting on leaf breakdown in a southern Appalachian stream. Freshwater Biol. 12, 331–344.CrossRefGoogle Scholar
  36. 36.
    Wetzel, R. G., Likens, G. E. (2000) Limnological Analysis. Springer-Verlag, New York.CrossRefGoogle Scholar
  37. 37.
    Whiles, M. R., Wallace, J. B., Chung, K. (1993) The influence of Lepidostoma spp. (Trichoptera: Lepidostomatidae) on recovery of leaf-litter processing in disturbed headwater streams. Am. Midland Naturalist J. 130, 356–363.CrossRefGoogle Scholar
  38. 38.
    He, X., Lin, Y., Han, G., Guo, P., Tian, X. (2010) The effect of temperature on decomposition of leaf litter from two tropical forests by a microcosm experiment. Eur. J. Soil Biol. 46, 200–207.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • T. Kucserka
    • 1
    • 2
    Email author
  • Kata Karádi-Kovács
    • 1
  • M. Vass
    • 1
  • G. B. Selmeczy
    • 1
  • Katalin Eszter Hubai
    • 1
  • Viktória Üveges
    • 1
  • I. Kacsala
    • 1
  • N. Törő
    • 3
  • Judit Padisák
    • 1
    • 4
  1. 1.Department of LimnologyUniversity of PannoniaHungary
  2. 2.Department of Meteorology and Water ManagementUniversity of PannoniaKeszthelyHungary
  3. 3.Department of Earth and Environmental SciencesUniversity of PannoniaVeszprémHungary
  4. 4.HAS UP Limnoecology Research Group of the Hungarian Academy of SciencesVeszprémHungary

Personalised recommendations