Acta Biologica Hungarica

, Volume 65, Issue 1, pp 85–95 | Cite as

Genoprotectivity of Methanol and Ethanol Extracted Leaf Sap of Trigonella Foenum-Graecum in Allium Cepa Root Assay

  • Laila MekkiEmail author


Fenugreek (Trigonella foenum-graecum) of Fabacecae family is widely distributed throughout the world and used as an old medicinal plant and traditional food. The present study deals with the investigation of the anti-genotoxic potential of methanol (MTG) and ethanol (ETG) extracted leaf sap of fenugreek on Allium cepa root tip cells, which were treated with cadmium sulfate (CdSO4). Three types of treatments were applied. First, roots were treated with different concentrations of methanolic and ethanolic extracts (0.1%, 0.5% and 1%) separately for 3 h each, followed by CdSO4 treatment (at 250 ppm, for 3 h). Second, roots were first treated with CdSO4 followed by extracts treatment. Third, root tips were treated with CdSO4 with extracts treatments at the same time. For controls, roots with CdSO4 (250 ppm) and distilled water served as positive and negative control, respectively. The results showed that the methanol and ethanol extracts of fenugreek modulated the genotoxic and clastogenic aberrations, which were induced by CdSO4. The protection activity of MTG (1%) was 50% in the first treatment, 70% in the second treatment and 82% in the third treatment and 61%, 68% and 88% of ETG (1%), respectively. DNA rearrangements were also observed by revealing new RAPD bands in the total DNS samples isolated from Allium roots after treatmenst.


Trigonella foenum-graecum anti-genotoxic potential random amplified polymorphic DNA (RAPD) cadmium sulfate (CdSO4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Habori, M., Rama, A. (2002) Pharmacological properties. In: Petropoulos, G. A. (ed.) Fenugreek, the Genus Trigonella. Taylor and Francis, London, New York, pp. 163–182.Google Scholar
  2. 2.
    Atienzar, F., Conradi, M., Evenden, A., Jha, A., Depledge, M. (1999) Qualitative assessment of genotoxicity using RAPD: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo(a)pyrene. Environ. Toxicol. Chem. 18, 2275–2282.PubMedGoogle Scholar
  3. 3.
    Atienzar, F. A., Cordi, B., Donkin, M. B., Evenden, A. J., Jha, A. N., Depledge, M. H. (2000) Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmate. Aquatic Toxicol. 50, 1–12.CrossRefGoogle Scholar
  4. 4.
    Atienzar, F. A., Venier, P., Jha, A. N., Depledge, M. H. ( 2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat. Res. 521, 151–163.CrossRefGoogle Scholar
  5. 5.
    Atienzar, F. A., Jha, A. N. (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat. Res. 613, 76–102.CrossRefGoogle Scholar
  6. 6.
    Avanzi, M. (1950) Observazioni sull’attivita citologica di alcuni composti chimic. Caryologia 3, 234–248.CrossRefGoogle Scholar
  7. 7.
    Basch, E., Ulbricht, C., Kuo, G., Szapary, P., Smith, M. (2003) Therapeutic applications of fenugreek. Altern. Med. Rev. 8, 20–27.PubMedGoogle Scholar
  8. 8.
    Bhat, T. M., Choudhary, S., Ansari, M., Alka, Aslam, R. (2012) Genotoxicity and molecular screening of proteins in root tip cells of Trigonella foenum-graecum (Fenugreek var. Azad) under cadmium stress condition. Int. J. Plant Phys. Biochem. 4, 46–51.Google Scholar
  9. 9.
    Blokhina, O., Virolainen, E., Fragersted, K. V. (2003) Antioxidants, Oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194.CrossRefGoogle Scholar
  10. 10.
    Cavusoglu, K. (2011) The investigation of cytotoxic effects of refinery wastewater on root tip cells of Vicia faba L. J. Environ. Biol. 31, 465–470.Google Scholar
  11. 11.
    Enan, M. R. (2006) Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotech. Appl. Biochem. 43, 147–154.CrossRefGoogle Scholar
  12. 12.
    Fusconi, A., Repetto, O., Bonab, E., Massab, N., Galloa, C., Dumas-Gaudot, E., Bertab, G. (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ. Exp. Bot. 58, 253–260.CrossRefGoogle Scholar
  13. 13.
    Greco, M., Chiappetta, A., Bruno, L., Bitonti, M. B. (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695–709.CrossRefGoogle Scholar
  14. 14.
    Grover, I. S., Kaur, S. (1999) Genotoxicity of wastewater samples from sewage and industrial effluents detected by Allium cepa root anaphase aberration and micronucleus assays. Mutat. Res. 426, 183–188.CrossRefGoogle Scholar
  15. 15.
    Kim, S. C., Byun, S. H., Yang, C. H., Kim, J. W., Kim, S. G. (2004) Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effect on bad translocation and cytochrome C-mediated PARP cleavage). Toxicology 197, 239–251.CrossRefGoogle Scholar
  16. 16.
    Lavid, N., Schwartz, A., Yarden, O., Tel-Or, E. (2001) The involvement of polyphenols and peroxidase activity in heavy metal accumulation by epidermal glands of the water lily (Nymphaeaceae). Planta 212, 323–331.CrossRefGoogle Scholar
  17. 17.
    Liu, W., Yang, Y. S., Zhou, Q., Xie, L., Li, P., Sun, T. (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67, 1155–1163.CrossRefGoogle Scholar
  18. 18.
    Lutzen, A., Liberti, S. E., Rasmussen, L. J. (2004) Cadmium inhibits human DNA mismatch repair in-vitro. Biochem. Biophys. Res. Commun. 321, 21–25.CrossRefGoogle Scholar
  19. 19.
    Mekki, L., Badr, A. (2013) Cytological and molecular consequences of wheat grain exposure to microwave radiations. Acta Bot. Hung. 55, 61–79.CrossRefGoogle Scholar
  20. 20.
    Mezzoug, N., Abrini, J., Serano, A. M., Alonso-Moraga, A., Idaomar, M. (2006) Study on antigenotoxic effects of Moroccan medicinal plants and spices using the white/white+ somatic assay in Drosophila. Afr. J. Tradit. Complement Altern. Med. 3, 22–31.Google Scholar
  21. 21.
    Miadokova, E., Nadova, S., Vickova, V., Duhova, V., Kopaskova, M., Cipak, L., Rauko, P., Mucaji, P., Grancai, D. (2008) Antigenotoxic effect of extract from Cynara cardunculus. Phytother. Res. 22, 77–81.CrossRefGoogle Scholar
  22. 22.
    Miraldi, E., Ferri, S., Mostaghimi, V. (2001) Botanicals drugs and preparations in the traditional medicine of West Azerbaijan (Iran). J. Ethanopharmacol 75, 77–87.CrossRefGoogle Scholar
  23. 23.
    Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Nilan, R. A. (1978) Potential of plant genetic systems for monitoring and screening mutagens. Environ. Health Perspect. 27, 181–196.CrossRefGoogle Scholar
  25. 25.
    Premanath, R., Sudisha, J., Lakshmi, D., Aradhya, S. M. (2011) Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. Res. J. Medicinal Plant 5, 695–705.CrossRefGoogle Scholar
  26. 26.
    Puri, D. (1998) Therapeutic potential of fenugreek. Indian J. Physiol. Pharmacol. 42, 423–424.PubMedGoogle Scholar
  27. 27.
    Rani, G., Kaur, K., Wadhwa, R., Kaul, S. C., Nagpal, A. (2005) Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food Chem. Toxicol. 43, 95–98.CrossRefGoogle Scholar
  28. 28.
    Rathore, H. S., Mukesh, M. (2005) Prevention of lead toxicity in Allium cepa root tip cells with myrobalan (fruit of Terminalia chebula). Biochem. Cellular Arch. 5, 169–176.Google Scholar
  29. 29.
    Rathore, H. S., Shazia, B., Anjali, S., Makwana, M. (2006) Prevention of aluminium chloride-induced mitodepression with myrobalan (fruit of Terminalia chebula, Retz, Combretaceae) in Allium cepa model. Ethnobot. Leaflets 10, 272–279.Google Scholar
  30. 30.
    Rogers, O., Scott, J., Bendich, A. (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues Plant Mol. Biol. 5, 69–76.Google Scholar
  31. 31.
    Rosa, E. V., Valgas, C., Souza-Sierra, M. M., Correa, A. X., Radetski, C. M. (2003) Biomass growth, micronucleus induction and antioxidant stress enzymes responses in Vicia faba exposed to cadmium in solution. Environ. Toxicol. Chem. 22, 645–649.CrossRefGoogle Scholar
  32. 32.
    Sarkar, D., Sharma, A. (1996) Plant extracts as modulators of genotoxic effects. The Bot. Rev. 62, 275–300.CrossRefGoogle Scholar
  33. 33.
    Savva, D. (1998) Use of DNA fingerprinting to detect genotoxic effects, Ecotoxicol. Environ. Safety 41, 103–106.CrossRefGoogle Scholar
  34. 34.
    Siegel, S. M. (1977) The cytotoxic response of Nicotiana protoplast to metal ions: a survey of the chemical elements. Water, Air and Soil Pollution 8, 293–304.CrossRefGoogle Scholar
  35. 35.
    Sreeranjini, S., Siril, E. A. (2011) Evaluation of anti-genotoxicity of the leaf extracts of Morinda citrifolia Linn. Pl. Soil Env. 57, 222–227.CrossRefGoogle Scholar
  36. 36.
    Waisberg, M., Joseph, P., Hale, B., Beyersmann, D. (2003) Molecular and cellular mechanism of cadmium carcinogenesis. Toxicology 192, 95–117.CrossRefGoogle Scholar
  37. 37.
    Williams, J., Kubelik, A. R., Livak, K. J. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18, 6531–6535.CrossRefGoogle Scholar
  38. 38.
    Wolf, H. D., Blust, R., Backeljau, T. (2004) The use of RAPD in ecotoxicology. Mutat. Res. 566, 249–262.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Xiao, Y. M. (1998) Antagonistic effect of calcium, zinc and selenium against Cd induced chromosomal aberration and micronuclei in root cells of Hordeum vulgare. Mutat. Res. 420, 1–6.CrossRefGoogle Scholar
  40. 40.
    Zhiyi, R., Haowen, Y. (2004) A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicol. Environ. Safety 58, 96–103.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Botany Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations