Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 1, pp 61–71 | Cite as

Effect of Salinity on Moisture Content, Pigment System, and Lipid Composition in Ephedra Alata Decne

  • A. A. AlqarawiEmail author
  • Abeer Hashem
  • E. F. Abd_Allah
  • T. S. Alshahrani
  • Asma A. Huqail
Article

Abstract

The present work was carried out to uncover the effect of salinity stress on shoot moisture percentage, pigment content and lipid composition of Ephedra alata Decne. The results suggested that salinity caused significant decrease in plant moisture content. The chl. a, b and carotenoids showed significant decrease with increasing concentration of salt. Total pigment content also showed decline at all salt stress levels. Salt stress caused significant decrease in total lipids (TL), triacylglycerol (TG) and sterol (S) accompanied with an increase in diacylglycerol (DG), sterol ester (SE), and non-esterified fatty acids (FAA) of E. alata. Moreover, saline stress caused significant decrease in all phospholipid fractions except phosphatidic acid which increases during salt stress. Salinity stress resulted in increase of saturated fatty acids and decreases the percentage of un-saturated fatty acids in E. alalta.

Keywords

Salinity E. alata moisture pigments lipids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas, H. K., Paul, R. N., Riley, R. T., Tanaka, T. T., Shier, W. T. (1998) Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solanum nigrum L.) leaf discs and correlation with biochemical measures of toxicity. Toxicon 36, 1821–1832.PubMedGoogle Scholar
  2. 2.
    Abd_Allah, E. F. (2005) Effect of a Bacillus subtilis isolate on Southern blight (Sclerotium rolfsii) and lipid composition of peanut seeds. Phytoparasitica 33, 460–466.Google Scholar
  3. 3.
    Abd_Allah, E. F., El-Didamony, G., Sarhan, M. M. (1997) Biological control of Fusarium oxysporum in bean by Bacillus subtilis. Egypt. J. Phytopathol. 25, 71–83.Google Scholar
  4. 4.
    A bd_Allah, E. F., Ezzat, S. M. (2004) Role of lipid metabolism through bioremediation of fusaric acid in germinating peanut seedlings. Phytoparasitica 32, 38–42.Google Scholar
  5. 5.
    Abd_Allah, E. F., Hashem Abeer (2006) Seed mycoflora of Lens esculenta and their biocontrol by chitosan. Phytoparasitica 34, 213–218.Google Scholar
  6. 6.
    Abd_Allah, E. F., Hashem Abeer, Ezzat, S. M. (2006) Lipid metabolism in tomato and bean as a sensitive monitor for biocontrol of wilt diseases. Phytoparasitica 34, 516–522.Google Scholar
  7. 7.
    Abdallah, L., Chaieb, M. (2007) Water status and growth phenology of a Sahran shrub in North Africa. Afr. J. Ecol. 1, 80–85.Google Scholar
  8. 8.
    Abdul-Qados, Amira M. S. (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agri. Sci. 10, 7–15.Google Scholar
  9. 9.
    Abourashed, E. A., El-Alfy, T., Abir-Khan, I. A., Walker, L. (2003) Ephedra in Perspective: ACurrent Review. Phytother. Res. 17, 703–712.PubMedGoogle Scholar
  10. 10.
    Ahmad, P, Hakeem, K. R., Kumar, A., Ashraf, M., Akram, N. A. (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr. J. Biotech. 11, 2694–2703.Google Scholar
  11. 11.
    Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., Sharma, S. (2010) Roles of Enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotech. 30, 161–175.Google Scholar
  12. 12.
    Ahmad, P., Nabi, G., Jeleel, C. A., Umar, S. (2011) Free radical production, oxidative damage and anti-oxidant defense mechanisms in plants under abiotic stress. In: Ahmad, P., Umar, S. (eds) Oxidative Stress: Role of Antioxidants in Plants. Studium Press, New Delhi, pp. 19–53.Google Scholar
  13. 13.
    Ahmad, P., Prasad, M. N. V. (2012a) Environmental Adaptations and Stress Tolerance in Plants in the Era of Climate Change. Springer Science + Business Media, New York.Google Scholar
  14. 14.
    Ahmad, P., Prasad, M. N. V. (2012b) Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer Science + Business Media, New York.Google Scholar
  15. 15.
    Ahmad, P., Sharma, S. (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ. 54, 89–99.Google Scholar
  16. 16.
    Ahmad, P., Umar, S. (2011) Oxidative Stress: Role of Antioxidants in Plants. Studium Press, New Delhi.Google Scholar
  17. 17.
    Al-Taisan, Wafa’a A. (2010) Comparative effects of drought and salt stress on germination and seedling growth of Pennisetum divisum (Gmel.) Henr. Amer. J. Appl. Sci. 7, 640–646.Google Scholar
  18. 18.
    Al-Taisan, Wafa’a A., Alqarawi, A. A., Alsubiee, Moodi, S. (2010) Effect of water stress by polyethylene glycol 8000 and sodium chloride on germination of Ephedra alata Decne seeds. Saudi J. Biol. Sci. 17, 253–257.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Alqarawi, A. A., Abd_Allah, E. F. (2010) Maintenance of Ephedra alata seeds viability via storage containers. Amer. J. Plant Sci. 1, 138–146.Google Scholar
  20. 20.
    Alqarawi, A. A., Abd_Allah, E. F., Hashem Abeer (2011) Ephedra alata as biologically-based strategy inhibit aflatoxigenic seedborne mold. Afr. J. Microbiol. Res. 5, 2297–2303.Google Scholar
  21. 21.
    Amenta, J. S. (1964) A rapid method for quantification of lipids separated by thin layer chromatography. J. Lipid Res. 5, 270–272.PubMedGoogle Scholar
  22. 22.
    Amirjani, M. R. (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Amer. J. Plant Physiol. 5, 350–360.Google Scholar
  23. 23.
    Bargmann, B. O., Laxalt, A. M., ter Riet B., van Schooten, B., Merquiol, E., Testerink, C., Haring, M. A., Bartels, D., Munnik, T. (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89.PubMedGoogle Scholar
  24. 24.
    Chookhampaeng, S. (2011) The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. Eur. J. Sci. Res. 49, 103–109.Google Scholar
  25. 25.
    Cicek, N., Cakirlar, H. (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol. 28, 66–74.Google Scholar
  26. 26.
    Clarke, S. D., Turini, M., Jump, D. (1997) Polyunsaturated fatty acids regulate lipogenic and peroxisomal gene expression by independent mechanisms. PLEFA 57, 65–69.Google Scholar
  27. 27.
    Debez, A., Koyro, H.W., Grignon, C., Abdelly, C., Huchzermeyer, B. (2008) Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiol. Plant. 133, 373–385.PubMedGoogle Scholar
  28. 28.
    El-Banoby, F. E., Rudolf, K. (1979) A polysaccharide from liquid cultures of Pseudomonas phaseolicola which specifically induces water-soaking in bean leaves (Phaseolus vulgaris L.). Phytopathol. Z. 95, 38–50.Google Scholar
  29. 29.
    Fadeel, A. A. (1962) Location and properties of chloroplasts and pigment determination in roots. Physiol. Plant. 15, 130–146.Google Scholar
  30. 30.
    Fadzilla, N. M., Finch, R. P., Burdon, R. H. (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J. Exp. Bot. 48, 325–331.Google Scholar
  31. 31.
    Gapinska, M., Sklodowska, M., Gabara, B. (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant. 30, 11–18.Google Scholar
  32. 32.
    Georgopapadakou, N. H., Walsh, T. J. (1996) Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 40, 279–291.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.PubMedGoogle Scholar
  34. 34.
    Guenther, R., Gilbert, F., Zalat, S., Salem, K. A. (2005) Vegetation and grazing in the St. Katherine protectorate, South Sinai, Egypt. Egypt. J. Biol. 7, 55–66.Google Scholar
  35. 35.
    Guo, R., Zhou, J., Hao, W., Gong, D. Z., Zhong, X. L., Gu, F. X., Liu, Q., Xia, X., Tian, J. N., Li, H. R. (2011) Germination, growth, photosynthesis and ionic balance in Setaria viridis seedlings subjected to saline and alkaline stress. Can. J. Plant Sci. 91, 1077–1088.Google Scholar
  36. 36.
    Hegazi, Ghada A., El-Lamey Taghried, M. (2011) Callus induction and extraction of Ephedrine from Ephedra alata Decne. cultures. Am. Eurasian J. Agric. Environ. Sci. 11, 19–25.Google Scholar
  37. 37.
    Hong, Y., Devaiah, S. P., Bahn, S. C., Thamasandra, B. N., Li, M., Welti, R., Wang, X. (2009) Phospholipase De and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. The Plant J. 58, 376–387.PubMedGoogle Scholar
  38. 38.
    Hong, Y., Zhang, W., Wang, X. (2010) Phospholipase D and phosphatidic acid signaling in plant response to drought and salinity. Plant, Cell Environ. 33, 627–635.Google Scholar
  39. 39.
    Hosono, K. (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J. Gen. Microbiol. 138, 91–96.Google Scholar
  40. 40.
    Johnson, A., Stocks, R. (1971) Gas-liquid chromatography of lipids. In: Johnson, A., Davenport, J. (eds) Biochemistry and Methodology of Lipids, Wiley Interscience, New York, NY.Google Scholar
  41. 41.
    Júnior, R. R. M., Oliveira, M. S. C., Baccache, M. A., de Paula, F. M. (2008) Effects of water deficit and rehydration on the polar lipid and membranes resistance leaves of Phaseolus vulgaris L. cv. Pérola. Braz. Arch. Biol. Techn. 51, 361–367.Google Scholar
  42. 42.
    Katare D. P., Nabi, G., Azooz, M. M., Aeri, V., Ahmad, P. (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J. Funct. Environ. Bot. 2(1), 65–74.Google Scholar
  43. 43.
    Kates, M. (1972) Techniques of lipidology. In: Work, T. W., Work, E. (eds) Laboratory Techniques in Biochemistry and Molecular Biology. North-Holland Publishing Co., Amsterdam, The Netherlands.Google Scholar
  44. 44.
    Kates, M., Marshall, M. O. (1975) Biosynthesis of phosphoglycerides in plants. In: Galliard, T., Mercer, E. I. (eds) Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Academic Press, New York, NY, pp. 115–159.Google Scholar
  45. 45.
    Kaya, C., Higgs, D., Kirnak, H. (2001) The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulg. J. Plant Physiol. 27, 47–59.Google Scholar
  46. 46.
    Khare, N., Goyary, D., Singh, N. K., Shah, P., Rathore, M., Anandhan, S., Sharma, D., Arif, M., Ahmed, Z. (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. P. C. T. O. C. 103, 267–277.Google Scholar
  47. 47.
    Knox, J. P., Dodge, A. D. (1985) The photodynamic action of eosin, a singlet oxygen generator. Planta 164, 22–34.PubMedGoogle Scholar
  48. 48.
    Laureillard, J., Largeau, C., Casadevall, E. (1988) Oleic acid in the biosynthesis of the resistant biopolymers of Botryococcus braunii. Phytochem. 27, 2095–2098.Google Scholar
  49. 49.
    Mandhania, S., Madan, S., Sawhney, V. (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 227, 227–231.Google Scholar
  50. 50.
    Marsh, J. B., Weinstein, D. B. (1966) Simple charring method for determination of lipids. J. Lipid Res. 7, 574–576.PubMedGoogle Scholar
  51. 51.
    Müller, M., Santarius, K. A. (1978) Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant Physiol. 62, 326–329.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Navari-Izzo, F., Quartacci, M. F., Izzo, R. (1993) Lipid composition of plasma membranes isolated from sunflower seedlings grown under water stress. Physiol. Plant. 87, 508–514.Google Scholar
  53. 53.
    Oku, H., Baba, S., Koga, H., Takara, K., Iwasaki, H. (2003) Lipid composition of mangrove and its relevance to salt tolerance. J. Plant Res. 116, 37–45.PubMedGoogle Scholar
  54. 54.
    Radwan, S. S., Mangold, H. K. (1976) The lipids of plant tissue cultures. Adv. lipid Res. 12, 171–211.Google Scholar
  55. 55.
    Rasool, S., Ahmad, A., Siddiqi, T. O., Ahmad, P. (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plantarum (In Press).Google Scholar
  56. 56.
    Rhodes, D., Samaras, Y. (1994) Genetic control of osmoregulation in plant. In: Strange, K. (ed.) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp. 347–361.Google Scholar
  57. 57.
    Rouser, G., Fleischer, S., Yamamoto, A. (1970) Two-dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids and phosphorus analysis of spots. Lipids 5, 494–496.PubMedGoogle Scholar
  58. 58.
    Shereen, A., Ansari, R., Mumtaz, S., Bughio, H. R., Mujtaba, S. M., Shirazi, M. U., Khan, M. A. (2009) Impact of gamma irradiation induced changes on growth and physiological responses of rice under saline conditions. Pak. J. Bot. 41, 2487–2495.Google Scholar
  59. 59.
    Sultana, N., Ikeda, T., Itoh, R. (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 42, 211–220.Google Scholar
  60. 60.
    Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P., McManus, M. T. (2010) Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr. J. Biotech. 9, 145–152.Google Scholar
  61. 61.
    Upchurch, R. (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotech. Lett. 30, 967–977.Google Scholar
  62. 62.
    Waisel, Y., Radunz, A. (2006) Differences in lipid and in fatty acid composition of taproots and lateral roots of faba bean plants (Vicia faba L.) grown in saline media. Plant Biosyst. 140, 94–99.Google Scholar
  63. 63.
    Wu, X. X., Ding, H. D., Chen, J. L., Zhang, H. J., Zhu, W. M. (2010) Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. Afr. J. Biotech. 9, 7837–7846.Google Scholar
  64. 64.
    Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Xiao, Y., Liang, Y., Zhang, W. (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762–773.PubMedGoogle Scholar
  65. 65.
    Zörb, C., Herbst, R., Forreiter, C., Schubert, S. (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9, 4209–4220.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. A. Alqarawi
    • 1
    Email author
  • Abeer Hashem
    • 2
  • E. F. Abd_Allah
    • 1
  • T. S. Alshahrani
    • 1
  • Asma A. Huqail
    • 2
  1. 1.Plant Production Department, College of Food & Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations