Acta Biologica Hungarica

, Volume 65, Issue 1, pp 38–46 | Cite as

A Comparison of the Levels of Hydroxamic Acids in Aegilops Speltoides and a Hexaploid Wheat and Effects on Rhopalosiphum Padi Behaviour and Fecundity

  • Henriett ElekEmail author
  • Lesley Smart
  • S. Ahmad
  • Angéla Anda
  • C. P. Werner
  • J. A. Pickett


Hydroxamic acids (HAs) are plant secondary metabolites produced by certain cereals, which have been found to be toxic to pest aphids in artificial diet assays. Previous studies have shown that tetraploid and hexaploid wheat varieties, the leaf tissues of which contained higher levels of these compounds than used in artificial diets, did not reduce aphid settling or fecundity. This current study reports findings on a high HA producing B genome accession of the diploid ancestor of wheat, Aegilops speltoides. We found that this accession does have a negative impact on aphid host selection and substantially reduces nymph production. Whole leaf tissue assays showed very high levels of HAs, well in excess of the toxic level determined in the artificial diet assays. Extraction of the apoplast fluid (AF) from this accession showed that the HA level is much lower than that of the whole tissue, but is still close to the artificial diet toxic level. Furthermore the HA level in the AF increases in response to aphid feeding. These observations could explain why hexaploid wheat remains susceptible to aphids, despite having whole leaf tissue HA levels in excess of the toxic levels determined in artificial diets.


Rhopalosiphum padi Aegilops speltoides wheat hydroxamic acids apoplast fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., Smart, L., Glauser, G., Erb, M., Frey, M., Ton, J. (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157, 317–327.CrossRefGoogle Scholar
  2. 2.
    Argandona, H. V., Niemeyer, H. M., Corcuera, J. L. (1981) Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphid Schizaphis graminum. Phytochem. 20, 673- 676.Google Scholar
  3. 3.
    Argandona, H. V., Corcuera, L., Niemeyer, H. M., Campbell, C. B. (1983) Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug, Schizaphis graminum. Entomol. Exp. Appl. 34, 134–138.CrossRefGoogle Scholar
  4. 4.
    Barria, N. B., Copaja, V. S., Niemeyer, H. M. (1992) Occurrence of DIBOA in wiled Hordeum species and its relation to aphid resistance. Phytochem. 31, 89–91.CrossRefGoogle Scholar
  5. 5.
    Baumeler, A., Hesse, M., Werner, C. (2000) Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochem. 53, 213–222.CrossRefGoogle Scholar
  6. 6.
    Beck, D. L., Dunn, G. M., Routley, D. G., Bowman, J. S. (1983) Biochemical basis of resistance in corn to the corn leaf aphid. Crop Sci. 23, 995–998.CrossRefGoogle Scholar
  7. 7.
    Cambier, V., Hance, T., de Hoffmann, E. (1999) Non-injured maize contains several 1,4-benzoxazin-3-one related compounds but only as glucoconjugates. Phytochem. Anal. 10, 119–126.CrossRefGoogle Scholar
  8. 8.
    Cambier, V., Hance, T., de Hoffmann, E. (2001) Effects of 1,4-benzoxazin-3-one derivates from maize on survival and fecundity of Metpolophium dirhodum (Walker) on artificial diet. J. Chem. Ent. 27, 359–370.Google Scholar
  9. 9.
    Elek, H., Smart, L., Martin, J., Ahmad, S., Gordon-Weeks, R., Welham, S., Nádasy, M., Pickett, J. A., Werner, C. P. (2013) The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the bird-cherry oat aphid, Rhopalosiphum padi. Ann. Appl. Biol. 162, 100–109.CrossRefGoogle Scholar
  10. 10.
    Figueroa, C. C., Simon, J., Gallic, J., Prunier-Leterme, N., Briones, L. M., Dedryver, C., Niemeyer, H. M. (2004) Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. J. Chem. Ecol. 30, 2515–2525.CrossRefGoogle Scholar
  11. 11.
    Givovich, A., Niemeyer, H. M. (1991) Effect of hydroxamic acids in wheat on BYDV transmission by Rhopalosiphum padi L. CIMMYT. Barley Yellow Dwarf Newsletter 4, 75–77.Google Scholar
  12. 12.
    Givovich, A., Niemeyer, H. M. (1991) Hydroxamic acids affecting barley yellow dwarf virus transmission by the aphid Rhopalosiphum padi. Entomol. Exp. Appl. 59, 79–85.CrossRefGoogle Scholar
  13. 13.
    Givovich, A., Sandström, J., Niemeyer, H. M., Pettersson J. (1994) Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance of Rhopalosiphum padi (L.) (Homoptera: Aphididae). J. Chem. Ecol. 20, 1923–1930.CrossRefGoogle Scholar
  14. 14.
    Gordon-Weeks, R., Smart, L., Ahmad, S., Zhang, Y., Elek, H., Jing, H., Martin, J., Pickett, J. (2010) The role of the benzoxazinone pathway in aphid resistance in wheat. HGCA, project report no. PR473Google Scholar
  15. 15.
    Hofman, J., Hofmanová, O. (1969) 1,4-Benzoxazine derivatives in plants. Eur. J. Biochem. 8, 109–112.CrossRefGoogle Scholar
  16. 16.
    Nicol, D., Copaja, S. V., Wratten, S. D., Niemeyer, H. M. (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann. Appl. Biol. 121, 11–18.CrossRefGoogle Scholar
  17. 17.
    Klun, J. A., Robinson, J. F. (1969) Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its resistance of the host plant to the European corn borer. J. Econ. Ent. 62, 214–220.CrossRefGoogle Scholar
  18. 18.
    Niemeyer, H. M., Givovich, A. (2000) Use of electropenetration graphs and phloem sap chemical analysis in studies of the effects of hydroxamic acids in cereals on aphid (Homoptera: Aphididae) feeding behavior. In: Walker, G. P., Backus, E. A. (eds) Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America, Lanham, MD, USA, pp. 237–244.Google Scholar
  19. 19.
    Oikawa, A., Ishihura, A., Iwamura, H. (2002) Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochem. 61, 331–337.CrossRefGoogle Scholar
  20. 20.
    Rustamani, A. M., Kanehisa, K., Tsumuki, H., Shiraga, T. (1996) The relationship between DIMBOA concentration in corn lines and resistance to aphids. Bull. Research Institute for Bioresources, Okayama University 4, 33–42.Google Scholar
  21. 21.
    Thackray, D. J., Wratten, S. D., Edwards, P. J., Niemeyer, H. M. (1991) Hydroxamic acids - potential resistance factors in wheat against the cereal aphids Sitobion avenae and Rhopalosiphum padi. In: Proceedings of 1990 Brighton Pest Control Conference-Pests and Diseases-1990, pp. 215–220.Google Scholar
  22. 22.
    Tjallingii, F. (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 57, 739–745.CrossRefGoogle Scholar
  23. 23.
    Tottman, D. R., Makepeace, R. J. (1979) An explanation of the decimal code for the growth stage of cereals, with illustrations. Ann. Appl. Biol. 93, 221–234.CrossRefGoogle Scholar
  24. 24.
    Virtanen, A. I., Hietala, P. K. (1955) 2(3)-Benzoxazolinone, an anti-Fusarium factor in rye seedlings. Acta Chem. Scand. 9, 1543–1544.CrossRefGoogle Scholar
  25. 25.
    Wang, G., Miyashita, N. T., Tsunewaki, K. (1997) Plasmon analysis of Triticum (wheat) and Aegilops: PCR-single-stand conformational polymorphisum (PCR-SSCP) analysis of organeller DNAs. Proceedings of the National Academy of Sciences of the United States of America 94, 14570–14577.CrossRefGoogle Scholar
  26. 26.
    Wyatt, J. I., White, F. P. (1977) Simple estimation of intrinsic rates for aphids and tetranychid mites. J. Appl. Ecol. 14, 757–766.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Henriett Elek
    • 1
    Email author
  • Lesley Smart
    • 2
  • S. Ahmad
    • 2
  • Angéla Anda
    • 3
  • C. P. Werner
    • 1
  • J. A. Pickett
    • 2
  1. 1.KWS UK LimitedThriplowUK
  2. 2.Biological Chemistry DepartmentRothamsted ResearchHarpendenUK
  3. 3.Department of Meteorology and Water Management, Georgikon FacultyUniversity of PannoniaKeszthelyHungary

Personalised recommendations