Advertisement

Acta Biologica Hungarica

, Volume 64, Issue 4, pp 414–425 | Cite as

The Effect of Partial Food Deprivation on the Astroglia in the Dorsal Subnucleus of the Lateral Septum of the Rat Brain

  • B. SzőkeEmail author
  • Zsuzsanna Lendvai
  • Katalin Halasy
Article

Abstract

The effect of 40% partial food deprivation was studied on the immunohistochemically detectable amount of glial fibrillary acidic protein (GFAP)—the specific marker of astroglia—in the dorsal subnucleus of lateral septum (LS) of male, intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum (control) or 40% food deprived for one week, then perfusion-fixed, their brains removed, and serial vibratome sections were processed for the immunocytochemical localization of GFAP. Computeraided densitometry was carried out on digital photographs.

The results showed that ovariectomy alone did not exert any effect on the density of GFAP-immunoreactivity (GFAP-IR) as compared to the values detected in intact females. Food deprivation increased the density of GFAP in each experimental group. The difference was most pronounced in males, significant in females and much less in ovariectomized females. Parietal cortex chosen as reference area did not show any increase in the local GFAP-IR.

It was previously shown that the dorsal subnucleus of the lateral septum reacts with plastic neurochemical changes to food deprivation. Our results prove that these changes affect not only neuronal but also glial elements.

Keywords

Glial fibrillary acidic protein immunocytochemistry densitometry food restriction ovariectomy 

Abbreviations

GFAP

glial fibrillary acidic protein

GFAP-IR

glial fibrillary acidic protein immunoreactivity

LS

lateral septum

OVX

ovariectomy

NPY

neuropeptide Y

CART

cocaine- and amphetamine regulated transcript

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Thanks are due to Ferenc Szalay for his kind help in computer-aided densitometry data processing, Dr. Bence Rácz for his useful comments after reading the manuscript and Szilvia Kovács for finding the proper statistical model and analysis. This work was supported by the Hungarian National Research Fund (OTKA) grant T 43170.

References

  1. 1.
    Abbott, N. J., Rönnbäck, L., Hansson, E. (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53.CrossRefGoogle Scholar
  2. 2.
    Achour, S. B., Pascual, O. (2010) Glia: The many ways to modulate synaptic plasticity. Neurochem. Int. 57, 440–445.CrossRefGoogle Scholar
  3. 3.
    Bignami, A., Eng, L. F., Dahl, D., Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435.CrossRefGoogle Scholar
  4. 4.
    Bridge, J. G. (1976) Unit activity in rat septal nuclei during water deprivation, drinking and rehydration. In: DeFrance, J. F. (ed.). The Septal Nuclei. Plenum Press, New York, pp. 229–239.CrossRefGoogle Scholar
  5. 5.
    Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278.CrossRefGoogle Scholar
  6. 6.
    Chaillou, E., Baumont, R., Tramu, G., Tillet, Y. (2000) Effect of feeding on Fos protein expression in sheep hypothalamus with special reference to the supraoptic and paraventricular nuclei: an immunohistochemical study. Eur. J. Neurosci. 12, 4515–4524.PubMedGoogle Scholar
  7. 7.
    Cheunsuang, O., Morris, R. (2005) Astrocytes in the arcuate nucleus and median eminence that take up a fluorescent dye from the circulation express leptin receptors and neuropeptide Y Y1 receptors. Gli. 52, 228–233.CrossRefGoogle Scholar
  8. 8.
    Chowen, J. A., Busiguina, S., Garcia-Segura, L. M. (1995) Sexual dimorphism and sex steroid modulation of glial fibrillary acidic protein messenger RNA and immunoreactivity levels in the rat hypothalamus. Neuroscienc. 69, 519–532.CrossRefGoogle Scholar
  9. 9.
    Corvetti, L., Aztiria, E., Domenici, L. (2006) Reduction of GFAP induced by long dark rearing is not restricted to visual cortex. Brain Res. 1067, 146–153.CrossRefGoogle Scholar
  10. 10.
    Eng, L. F. (1985) Glial fibrillary acidic protein: The major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8, 203–214.CrossRefGoogle Scholar
  11. 11.
    Eng, L. F., Vanderhaeghen, J. J., Bignami, A., Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354.CrossRefGoogle Scholar
  12. 12.
    Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E. (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4(11), e343.CrossRefGoogle Scholar
  13. 13.
    Gosselin, R. D., Gibney, S., O’Malley, D., Dinan, T. G., Cryan, J. F. (2009) Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscienc. 159, 915–925.CrossRefGoogle Scholar
  14. 14.
    Hajós, F., Halasy, K., Gerics, B., Szalay, F. (1999) Glial fibrillary acidic protein (GFAP)- immunoreactivity is reduced by castration in the interpeduncular nucleus of male rats. NeuroRepor. 10, 2229–2233.Google Scholar
  15. 15.
    Hidalgo, J., Florit, S., Giralt, M., Ferrer, B., Keller, C., Pilegaard, H. (2010) Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat. Brain Behav. Immun. 24, 119–126.CrossRefGoogle Scholar
  16. 16.
    Higuchi, S., Irie, K., Mishima, S., Araki, M., Ohji, M., Shirakawa, A., Akitake, Y., Matsuyama, K., Mishima, K., Mishima, K., Iwasaki, K., Fujiwara, M. (2010) The cannabinoid 1-receptor silent antagonist O-2050 attenuates preference for high-fat diet and activated astrocytes in mice. J. Pharmacol. Sci. 112, 369–372.CrossRefGoogle Scholar
  17. 17.
    Huszti, Zs. (2008) Astroglia anyagcsere sajátosságok, védelmi reakciók (Astroglial metabolism, protective reactions, in Hungarian). In: Huszti Zs, Kálmán M, editors. Glia. Akadémiai Kiadó, Budapest, pp. 223–250.Google Scholar
  18. 18.
    Janzsó, G., Valcz, G., Thuma, Á., Szőke, B., Lendvai, Zs., Ábrahám, H., Kozicz, T., Halasy, K. (2010) Cocaine- and amphetamine-regulated transcript (CART) peptide-immunopositive neuronal elements in the lateral septum: Rostrocaudal distribution in the male rat. Brain Res. 1362, 40–47.CrossRefGoogle Scholar
  19. 19.
    Kovács, É. G., Szalay, F., Halasy, K. (2005) Fasting-induced changes of neuropeptide immunoreactivity in the lateral septum of male rats. Acta Biol. Hung. 56, 185–197.CrossRefGoogle Scholar
  20. 20.
    Kovács, É. G., Szalay, F., Halasy, K. (2007) Chronic fasting-induced changes of neuropeptide immunoreactivity in the lateral septum of intact and ovariectomized female rats. Brain Res. 1153, 103–110.CrossRefGoogle Scholar
  21. 21.
    Martinez, L., Lacelle, S. (2007) Astrocytic reaction to a lesion, under hormonal deprivation. Neurosci. Lett. 415, 190–193.CrossRefGoogle Scholar
  22. 22.
    Oliveira, L. A., Gentil, C. G., Covian, M. R. (1990) Role of the septal area in feeding behaviour elicited by electrical stimulation of the lateral hypothalamus of the rat. Braz. J. Med. Biol. Res. 23, 49–58.PubMedGoogle Scholar
  23. 23.
    Pan, W., Hsuchou, H., He, Y., Sakharkar, A., Cain, C., Yu, C., Kastin, A. J. (2008) Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinolog. 149, 2798–2806.CrossRefGoogle Scholar
  24. 24.
    Pan, W., Hsuchou, H., Xu, C., Wu, X., Bouret, S. G., Kastin, A. J. (2011) Astrocytes modulate distribution and neuronal signaling of leptin in the hypothalamus of obese Avy mice. J. Mol. Neurosci. 43, 478–484.CrossRefGoogle Scholar
  25. 25.
    Párducz, Á., Perez, J., Garcia-Segura, L. M. (1993) Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscienc. 53, 395–401.CrossRefGoogle Scholar
  26. 26.
    Párducz, Á., Szilágyi, N., Hoyk, Zs., Naftolin, F., Garcia-Segura, L. M. (1996) Neuroplastic changes in the hypothalamic arcuate nucleus: the estradiol effect is accompanied by increased exo-endocytotic activity of neuronal membranes. Cell. Mol. Neurobiol. 16, 259–269.CrossRefGoogle Scholar
  27. 27.
    Perea, G., Araque, A. (2010) Glia modulates synaptic transmission. Brain Res. Rev. 63, 93–102.CrossRefGoogle Scholar
  28. 28.
    Perea, G., Navarrete, M., Araque, A. (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431.CrossRefGoogle Scholar
  29. 29.
    Ridet, J. L., Malhotra, S. K., Privat, A., Gage, F. H. (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577.CrossRefGoogle Scholar
  30. 30.
    Shimizu, H., Shimomura, Y., Nakanishi, Y., Futawatari, T., Ohtani, K., Sato, N. (1997) Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154, 285–292.CrossRefGoogle Scholar
  31. 31.
    Stranahan, A. M., Mattson, M. P. (2008) Impact of energy intake and expenditure on neuronal plasticity. Neuromol. Med. 10, 209–218.CrossRefGoogle Scholar
  32. 32.
    Stratford, T. R., Kelley, A. E. (1999) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behaviour. J. Neurosci. 15, 11040–11048.CrossRefGoogle Scholar
  33. 33.
    Theodosis, D. T., Poulain, D. A., Oliet, S. H. R. (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008.CrossRefGoogle Scholar
  34. 34.
    Timofeeva, E., Richard, D. (2001) Activation of the central nervous system in obese Zucker rats during food deprivation. J. Comp. Neurol. 441, 71–89.CrossRefGoogle Scholar
  35. 35.
    Vongvatcharanon, U., Mukem, S., Udomuksorn, W., Kumarsit, E., Vongvatcharanon, S. (2009) Alcohol administration during adulthood induces alterations of parvalbumin and glial fibrillary acidic protein immunoreactivity in rat hippocampus and cingulate cortex. Acta Histochem. 112, 392–401.CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Barres, B. A. (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 1–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Anatomy and Histology, Faculty of Veterinary SciencesSzent István UniversityBudapestHungary

Personalised recommendations