The Effect of Partial Food Deprivation on the Astroglia in the Dorsal Subnucleus of the Lateral Septum of the Rat Brain

Abstract

The effect of 40% partial food deprivation was studied on the immunohistochemically detectable amount of glial fibrillary acidic protein (GFAP)—the specific marker of astroglia—in the dorsal subnucleus of lateral septum (LS) of male, intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum (control) or 40% food deprived for one week, then perfusion-fixed, their brains removed, and serial vibratome sections were processed for the immunocytochemical localization of GFAP. Computeraided densitometry was carried out on digital photographs.

The results showed that ovariectomy alone did not exert any effect on the density of GFAP-immunoreactivity (GFAP-IR) as compared to the values detected in intact females. Food deprivation increased the density of GFAP in each experimental group. The difference was most pronounced in males, significant in females and much less in ovariectomized females. Parietal cortex chosen as reference area did not show any increase in the local GFAP-IR.

It was previously shown that the dorsal subnucleus of the lateral septum reacts with plastic neurochemical changes to food deprivation. Our results prove that these changes affect not only neuronal but also glial elements.

Abbreviations

GFAP:

glial fibrillary acidic protein

GFAP-IR:

glial fibrillary acidic protein immunoreactivity

LS:

lateral septum

OVX:

ovariectomy

NPY:

neuropeptide Y

CART:

cocaine- and amphetamine regulated transcript

References

  1. 1.

    Abbott, N. J., Rönnbäck, L., Hansson, E. (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53.

    CAS  Article  Google Scholar 

  2. 2.

    Achour, S. B., Pascual, O. (2010) Glia: The many ways to modulate synaptic plasticity. Neurochem. Int. 57, 440–445.

    Article  Google Scholar 

  3. 3.

    Bignami, A., Eng, L. F., Dahl, D., Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435.

    CAS  Article  Google Scholar 

  4. 4.

    Bridge, J. G. (1976) Unit activity in rat septal nuclei during water deprivation, drinking and rehydration. In: DeFrance, J. F. (ed.). The Septal Nuclei. Plenum Press, New York, pp. 229–239.

    Chapter  Google Scholar 

  5. 5.

    Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278.

    CAS  Article  Google Scholar 

  6. 6.

    Chaillou, E., Baumont, R., Tramu, G., Tillet, Y. (2000) Effect of feeding on Fos protein expression in sheep hypothalamus with special reference to the supraoptic and paraventricular nuclei: an immunohistochemical study. Eur. J. Neurosci. 12, 4515–4524.

    CAS  PubMed  Google Scholar 

  7. 7.

    Cheunsuang, O., Morris, R. (2005) Astrocytes in the arcuate nucleus and median eminence that take up a fluorescent dye from the circulation express leptin receptors and neuropeptide Y Y1 receptors. Gli. 52, 228–233.

    Article  Google Scholar 

  8. 8.

    Chowen, J. A., Busiguina, S., Garcia-Segura, L. M. (1995) Sexual dimorphism and sex steroid modulation of glial fibrillary acidic protein messenger RNA and immunoreactivity levels in the rat hypothalamus. Neuroscienc. 69, 519–532.

    CAS  Article  Google Scholar 

  9. 9.

    Corvetti, L., Aztiria, E., Domenici, L. (2006) Reduction of GFAP induced by long dark rearing is not restricted to visual cortex. Brain Res. 1067, 146–153.

    CAS  Article  Google Scholar 

  10. 10.

    Eng, L. F. (1985) Glial fibrillary acidic protein: The major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8, 203–214.

    CAS  Article  Google Scholar 

  11. 11.

    Eng, L. F., Vanderhaeghen, J. J., Bignami, A., Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354.

    CAS  Article  Google Scholar 

  12. 12.

    Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E. (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4(11), e343.

    Article  Google Scholar 

  13. 13.

    Gosselin, R. D., Gibney, S., O’Malley, D., Dinan, T. G., Cryan, J. F. (2009) Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscienc. 159, 915–925.

    CAS  Article  Google Scholar 

  14. 14.

    Hajós, F., Halasy, K., Gerics, B., Szalay, F. (1999) Glial fibrillary acidic protein (GFAP)- immunoreactivity is reduced by castration in the interpeduncular nucleus of male rats. NeuroRepor. 10, 2229–2233.

    Google Scholar 

  15. 15.

    Hidalgo, J., Florit, S., Giralt, M., Ferrer, B., Keller, C., Pilegaard, H. (2010) Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat. Brain Behav. Immun. 24, 119–126.

    CAS  Article  Google Scholar 

  16. 16.

    Higuchi, S., Irie, K., Mishima, S., Araki, M., Ohji, M., Shirakawa, A., Akitake, Y., Matsuyama, K., Mishima, K., Mishima, K., Iwasaki, K., Fujiwara, M. (2010) The cannabinoid 1-receptor silent antagonist O-2050 attenuates preference for high-fat diet and activated astrocytes in mice. J. Pharmacol. Sci. 112, 369–372.

    CAS  Article  Google Scholar 

  17. 17.

    Huszti, Zs. (2008) Astroglia anyagcsere sajátosságok, védelmi reakciók (Astroglial metabolism, protective reactions, in Hungarian). In: Huszti Zs, Kálmán M, editors. Glia. Akadémiai Kiadó, Budapest, pp. 223–250.

    Google Scholar 

  18. 18.

    Janzsó, G., Valcz, G., Thuma, Á., Szőke, B., Lendvai, Zs., Ábrahám, H., Kozicz, T., Halasy, K. (2010) Cocaine- and amphetamine-regulated transcript (CART) peptide-immunopositive neuronal elements in the lateral septum: Rostrocaudal distribution in the male rat. Brain Res. 1362, 40–47.

    Article  Google Scholar 

  19. 19.

    Kovács, É. G., Szalay, F., Halasy, K. (2005) Fasting-induced changes of neuropeptide immunoreactivity in the lateral septum of male rats. Acta Biol. Hung. 56, 185–197.

    Article  Google Scholar 

  20. 20.

    Kovács, É. G., Szalay, F., Halasy, K. (2007) Chronic fasting-induced changes of neuropeptide immunoreactivity in the lateral septum of intact and ovariectomized female rats. Brain Res. 1153, 103–110.

    Article  Google Scholar 

  21. 21.

    Martinez, L., Lacelle, S. (2007) Astrocytic reaction to a lesion, under hormonal deprivation. Neurosci. Lett. 415, 190–193.

    CAS  Article  Google Scholar 

  22. 22.

    Oliveira, L. A., Gentil, C. G., Covian, M. R. (1990) Role of the septal area in feeding behaviour elicited by electrical stimulation of the lateral hypothalamus of the rat. Braz. J. Med. Biol. Res. 23, 49–58.

    CAS  PubMed  Google Scholar 

  23. 23.

    Pan, W., Hsuchou, H., He, Y., Sakharkar, A., Cain, C., Yu, C., Kastin, A. J. (2008) Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinolog. 149, 2798–2806.

    CAS  Article  Google Scholar 

  24. 24.

    Pan, W., Hsuchou, H., Xu, C., Wu, X., Bouret, S. G., Kastin, A. J. (2011) Astrocytes modulate distribution and neuronal signaling of leptin in the hypothalamus of obese Avy mice. J. Mol. Neurosci. 43, 478–484.

    CAS  Article  Google Scholar 

  25. 25.

    Párducz, Á., Perez, J., Garcia-Segura, L. M. (1993) Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscienc. 53, 395–401.

    Article  Google Scholar 

  26. 26.

    Párducz, Á., Szilágyi, N., Hoyk, Zs., Naftolin, F., Garcia-Segura, L. M. (1996) Neuroplastic changes in the hypothalamic arcuate nucleus: the estradiol effect is accompanied by increased exo-endocytotic activity of neuronal membranes. Cell. Mol. Neurobiol. 16, 259–269.

    Article  Google Scholar 

  27. 27.

    Perea, G., Araque, A. (2010) Glia modulates synaptic transmission. Brain Res. Rev. 63, 93–102.

    CAS  Article  Google Scholar 

  28. 28.

    Perea, G., Navarrete, M., Araque, A. (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431.

    CAS  Article  Google Scholar 

  29. 29.

    Ridet, J. L., Malhotra, S. K., Privat, A., Gage, F. H. (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577.

    CAS  Article  Google Scholar 

  30. 30.

    Shimizu, H., Shimomura, Y., Nakanishi, Y., Futawatari, T., Ohtani, K., Sato, N. (1997) Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154, 285–292.

    CAS  Article  Google Scholar 

  31. 31.

    Stranahan, A. M., Mattson, M. P. (2008) Impact of energy intake and expenditure on neuronal plasticity. Neuromol. Med. 10, 209–218.

    CAS  Article  Google Scholar 

  32. 32.

    Stratford, T. R., Kelley, A. E. (1999) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behaviour. J. Neurosci. 15, 11040–11048.

    Article  Google Scholar 

  33. 33.

    Theodosis, D. T., Poulain, D. A., Oliet, S. H. R. (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008.

    CAS  Article  Google Scholar 

  34. 34.

    Timofeeva, E., Richard, D. (2001) Activation of the central nervous system in obese Zucker rats during food deprivation. J. Comp. Neurol. 441, 71–89.

    CAS  Article  Google Scholar 

  35. 35.

    Vongvatcharanon, U., Mukem, S., Udomuksorn, W., Kumarsit, E., Vongvatcharanon, S. (2009) Alcohol administration during adulthood induces alterations of parvalbumin and glial fibrillary acidic protein immunoreactivity in rat hippocampus and cingulate cortex. Acta Histochem. 112, 392–401.

    Article  Google Scholar 

  36. 36.

    Zhang, Y., Barres, B. A. (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Ferenc Szalay for his kind help in computer-aided densitometry data processing, Dr. Bence Rácz for his useful comments after reading the manuscript and Szilvia Kovács for finding the proper statistical model and analysis. This work was supported by the Hungarian National Research Fund (OTKA) grant T 43170.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Szőke.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Szőke, B., Lendvai, Z. & Halasy, K. The Effect of Partial Food Deprivation on the Astroglia in the Dorsal Subnucleus of the Lateral Septum of the Rat Brain. BIOLOGIA FUTURA 64, 414–425 (2013). https://doi.org/10.1556/ABiol.64.2013.4.2

Download citation

Keywords

  • Glial fibrillary acidic protein
  • immunocytochemistry
  • densitometry
  • food restriction
  • ovariectomy