Phenolics Metabolism in Boron-Deficient Tea [Camellia Sinensis (L.) O. Kuntze] Plants

Abstract

Modification in the metabolism of phenolic compounds under boron (B) deficiency conditions was studied in tea plants. Plants were grown from seed, treated with low B in hydroponic medium under environmentally controlled conditions for six weeks. Dry matter production and B content of plants were significantly declined under B deficiency conditions. Boron starvation resulted in rising phenylalanine ammonia lyase activity in the young leaves and declining polyphenol oxidase activity in the roots. Soluble phenolics fraction was increased up to 3.4-fold in the young leaves while did not influence by B nutrition in the old leaves and roots. Cell wall (CW) bound phenolics and lignin content was lower in B-deficient plants compared with B-sufficient ones. Boron deficiency increased significantly activity of soluble peroxidase (POD) only in the leaves. Activity of ionically bound POD was decreased in the old leaf and roots while it increased in the young leaves upon B deprivation. Activity of covalently bound POD decreased in the roots and leaves of different age in low B plants. Our results suggested that tea plant is highly tolerant species to B deficiency and CW tightening and accumulation of oxidized phenolics are not mechanisms for growth inhibition under B deficiency conditions.

References

  1. 1.

    Asad, A., Bell, R. W., Dell, B., Huang, L. (1997) Development of a boron buffered solution culture system for controlled studies of plant boron nutrition. Plant Soil 188, 21–32.

    CAS  Article  Google Scholar 

  2. 2.

    Bacon, M. A., Thompson, D. S., Davies, W. J. (1997) Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum L. during drought? J. Exp. Bot. 48, 2075–2085.

    CAS  Article  Google Scholar 

  3. 3.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  4. 4.

    Broadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F. (2011) Function of nutrients: Micronutrients. In: Marschner, P. (ed.) Marschner’s Mineral Nutrition of Higher Plants. Academic Press, UK, pp. 191–248.

    Google Scholar 

  5. 5.

    Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., Pfeffer, H., Dannel, F., Römheld, V. (2002) Boron in plant biology. Plant Biol. 4, 205–223.

    CAS  Article  Google Scholar 

  6. 6.

    Cakmak, I., Römheld, V. (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193, 71–83.

    CAS  Article  Google Scholar 

  7. 7.

    Camacho-Cristóbal, J. J., Anzelotti, D., González-Fontes, A. (2002) Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol. Biochem. 40, 997–1002.

    Article  Google Scholar 

  8. 8.

    Camacho-Cristóbal, J. J., Herrera-Rodríguez, M. B., Beato, V. M., Rexach, J., Navarro-Gochicoa, M. T., Maldonado, J. M., González-Fontes, A. (2008) The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ. Exp. Bot. 63, 351–358.

    Article  Google Scholar 

  9. 9.

    Cara, F. A., Sánchez, E. J., Ruiz, M., Romero, L. (2002) Is phenol oxidation responsible for the shortterm effects of boron deficiency on plasma-membrane permeability and function in squash roots? Plant Physiol. Biochem. 40, 853–858.

    CAS  Article  Google Scholar 

  10. 10.

    Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., Nicholson, R. L. (1984) Phenylalanine ammonia-lyase and hydroxyl cinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 25, 111–123.

    CAS  Article  Google Scholar 

  11. 11.

    Dixon, R. A., Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7, 1085–1097.

    CAS  Article  Google Scholar 

  12. 12.

    Ghanati, F., Morita, A., Yokota, H. (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci. Plant Nutr. 48, 357–364.

    CAS  Article  Google Scholar 

  13. 13.

    Hajiboland, R., Bastani, B., Bahrami-Rad, S. (2011) Photosynthesis, nitrogen metabolism and antioxidant defense system in B-deficient tea (Camellia sinensis (L.) O. Kuntze) plants. J. Sci. I. R. Iran 22, 311–320.

    CAS  Google Scholar 

  14. 14.

    Hajiboland, R., Bastani, B., Bahrami-Rad, S. (2011) Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biol. Szeged 55, 265–272.

    Google Scholar 

  15. 15.

    Hajiboland, R., Farhanghi, F. (2010) Remobilization of boron, photosynthesis, phenolic metabolism and anti-oxidant defense capacity in boron-deficient turnip (Brassica rapa L.) plants. Soil Sci. Plant Nutr. 56, 427–437.

    CAS  Article  Google Scholar 

  16. 16.

    Herms, D. A., Mattson, W. J. (1992) The dilemma of plants: to growth or defend. Quart. Rev. Biol. 67, 283–335.

    Article  Google Scholar 

  17. 17.

    Juszczuk, I. M., Wiktorowska, A., Malusá, E., Rychter, A. M. (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267, 41–49.

    CAS  Article  Google Scholar 

  18. 18.

    Kovácik, J., Backor, M. (2007) Changes of phenolic metabolism and oxidative status in nitrogendeficient Matricaria chamomilla plants. Plant Soil 297, 255–265.

    Article  Google Scholar 

  19. 19.

    Lewis, N. G., Yamamoto, E. (1990) Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Physiol. Plant Mol. Biol. 41, 455–496.

    CAS  Article  Google Scholar 

  20. 20.

    Liakopoulos, G., Karabourniotis, G. (2005) Boron deficiency and concentrations and composition of phenolic compounds in Olea europaea leaves: a combined growth chamber and field study. Tree Physiol. 25, 307–315.

    CAS  Article  Google Scholar 

  21. 21.

    Lohse, G. (1982) Microanalytical azomethine-H method for boron determination in plant tissues. Commun. Soil Plant Anal. 13, 127–134.

    CAS  Article  Google Scholar 

  22. 22.

    Mahanta, P. K, Baruah, S. (1992) Changes in pigments and phenolics and their relationship with black tea quality. J. Sci. Food Agric. 59, 21–26.

    CAS  Article  Google Scholar 

  23. 23.

    Malusà, E., Russo, M. A, Mozzetti, C., Belligno, A. (2006) Modification of secondary metabolism and flavonoid biosynthesis under phosphate deficiency in bean roots. J. Plant Nutr. 29, 245–258.

    Article  Google Scholar 

  24. 24.

    Nagata, T., Hayatsu, M., Kosuge, N. (1992) Identification of aluminium forms in tealeaves by 27Al NMR. Phytochem. 31, 1215–1218.

    CAS  Article  Google Scholar 

  25. 25.

    Pillinger, J. M, Cooper, J. A, Ridge, I. (1994) Role of phenolic compounds in the antialgal activity of barley straw. J. Chem. Ecol. 20, 1557–1569.

    CAS  Article  Google Scholar 

  26. 26.

    Ranieri, A., Castagna, A., Baldan, B., Soldatini, G. F (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J. Exp. Bot. 52, 25–35.

    CAS  Article  Google Scholar 

  27. 27.

    Ruiz, J. M, Bretones, G., Baghour, M., Ragala, L., Belakbir, A., Romero, L. (1998) Relationship between boron and phenolic metabolism in tobacco leaves. Phytochem. 48, 269–272.

    CAS  Article  Google Scholar 

  28. 28.

    Salehi, S. Y, Hajiboland, R. (2008) A high internal phosphorus use efficiency in tea (Camellia sinensis L.) plants. Asian J. Plant Sci. 7, 30–36.

    CAS  Article  Google Scholar 

  29. 29.

    Shorrocks, V. M (1997) The occurrence and correction of boron deficiency. Plant Soil 193, 121–148.

    CAS  Article  Google Scholar 

  30. 30.

    Siegel, B. Z (1993) Plant peroxidases-an organismic perspective. Plant Growth Regul. 12, 303–312.

    CAS  Article  Google Scholar 

  31. 31.

    Singh, N., Singh, R., Kaur, K., Singh, H. (1999) Studies of the physico-chemical properties and polyphenoloxidase activity in seeds from hybrid sunflower (Helianthus annuus) varieties grown in India. Food. Chem. 66, 241–247.

    CAS  Article  Google Scholar 

  32. 32.

    Solecka, D. (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol. Plant. 19, 257–268.

    CAS  Article  Google Scholar 

  33. 33.

    Solecka, D., Boudet, A.-M., Kacperska, A. (1999) Phenylpropanoid and anthocyanin changes in lowtemperature treated winter oilseed rape leaves. Plant Physiol. Biochem. 37, 491–496.

    CAS  Article  Google Scholar 

  34. 34.

    Swain, T., Hillis, E. E (1959) The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 63–68.

    CAS  Article  Google Scholar 

  35. 35.

    Van Huystee, R. B, Zheng, X. (1995) Peanut peroxidase, its location and extension, coniferyl oxidation. Plant Physiol. Biochem. 33, 55–60..

    Google Scholar 

  36. 36.

    Wu, Y., Cosgrove, D. J (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J. Exp. Bot. 51, 1543–1553.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roghieh Hajiboland.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Hajiboland, R., Bahrami-Rad, S. & Bastani, S. Phenolics Metabolism in Boron-Deficient Tea [Camellia Sinensis (L.) O. Kuntze] Plants. BIOLOGIA FUTURA 64, 196–206 (2013). https://doi.org/10.1556/ABiol.64.2013.2.6

Download citation

tKeywords

  • B deficiency
  • peroxidases
  • phenylalanine ammonia lyase
  • polyphenol oxidase
  • tea plant