Acta Biologica Hungarica

, Volume 64, Issue 1, pp 71–85 | Cite as

Histological, Cytological and Biochemical Alterations Induced by Microcystin-LR and Cylindrospermopsin in White Mustard (Sinapis alba L.) Seedlings

  • C. Máthé
  • G. Vasas
  • G. Borbély
  • F. Erdődi
  • D. Beyer
  • Andrea Kiss
  • G. Surányi
  • S. Gonda
  • Katalin Jámbrik
  • Márta M-HamvasEmail author


This study compares the histological, cytological and biochemical effects of the cyanobacterial toxins microcystin-LR (MCY-LR) and cylindrospermopsin (CYN) in white mustard (Sinapis alba L.) seedlings, with special regard to the developing root system. Cyanotoxins induced different alterations, indicating their different specific biochemical activities. MCY-LR stimulated mitosis of root tip meristematic cells at lower concentrations (1 μg ml−1) and inhibited it at higher concentrations, while CYN had only inhibitory effects. Low CYN concentrations (0.01 μg ml−1) stimulated lateral root formation, whereas low MCY-LR concentrations increased only the number of lateral root primordia. Both inhibited lateral root development at higher concentrations. They induced lignifications, abnormal cell swelling and inhibited xylem differentiation in roots and shoots. MCY-LR and CYN induced the disruption of metaphase and anaphase spindles, causing altered cell divisions. Similar alterations could be related to decreased protein phosphatase (PP1 and PP2A) activities in shoots and roots. However, in vitro phosphatase assay with purified PP1 catalytic subunit proved that CYN in contrast to MCY-LR, decreased phosphatase activities of mustard in a non-specific way. This study intends to contribute to the understanding of the mechanisms of toxic effects of a protein phosphatase (MCY-LR) and a protein synthesis (CYN) inhibitory cyanotoxin in vascular plants.


Microcystin-LR cylindrospermopsin Sinapis alba protein phosphatase root histology 



Blue-Green Sinapis Test




4’,6’-diamidino-2 phenylindole


Glutathione-peroxidase enzymes


Glutathione-S-transferase enzymes


fifty percent inhibitory concentration


microtubule associated proteins






programmed cell death


serine/threonine protein phosphatases of type 1


catalytic subunit of protein phosphatase 1


serine/threonine protein phosphatases of type 2A


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge Dr. Ola Hadas for kindly helping with Aphanizomenon ovalisporum ILC164. We thank Dr. István Grigorszky for his help in taking microscopical photos. The work was supported by the Hungarian National Research Foundation Grants OTKA F46493, K68416, K81370, GVOP-3.2.1.-2004-04-0110/3.0. M. M-Hamvas, C. Máthé, G. Surányi and G. Vasas greatly acknowledge the personal support from Bolyai Janos Scholarship of the Hungarian Academy of Sciences. Mrs. Ágnes Németh, Éva Barabás and Katalin Havelant are acknowledged for their excellent technical assistance.


  1. 1.
    Abe, T., Lawson, T., Weyers, J. D. B., Codd, G. A. (1996) Microcystin-LR inhibits photosynthesis of Phaseolus vulgaris primary leaves: Implications for current spray irrigation practice. New Phytol. 133, 651–658.Google Scholar
  2. 2.
    Allen, M. M. (1968) Simple conditions for the growth of unicellular blue-green algae on plates. J. Phycol. 4, 1–4.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Armstrong, J., Armstrong, W. (2001) An overview of the effects of phytotoxins on Phragmites aus-tralis in relation to die-back. Aquatic Bot. 69, 251–268.Google Scholar
  4. 4.
    Banker, R., Carmeli, S., Hadas, O., Teltsch, B., Porat, R., Sukenik, A. (1997) Identification of cylin-drospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from lake Kinneret, Israel. J. Phycol. 33, 613–616.Google Scholar
  5. 5.
    Beyer, D., Surányi, G., Vasas, G., Roszik, J., Erdődi, F., M-Hamvas, M., Bácsi, I., Bátori, R., Serfőző, Z., Szigeti, Z. M., Vereb, G., Demeter, Z., Gonda, S., Mathe, C. (2009) Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 54, 440–449.Google Scholar
  6. 6.
    Campos, A., Vasconcelos, V. (2010) Molecular mechanisms of microcystin toxicity in animal cells. Review. Int. J. Mol. Sci. 11, 268–287.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Carmichael, W. W., Azevedo, S. M. F. O., An, J. S., Molica, R. J. R., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., Eaglesham, G. K. (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Persp. 109, 663–668.Google Scholar
  8. 8.
    Chaffey, N., Cholewa, E., Regan, S., Sundberg, B. (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plan. 114, 594–600.Google Scholar
  9. 9.
    Chen, J., Han, F. X., Wang, F., Zhang, H., Shi, Z. (2012) Accumulation and phytotoxicity of micro-cystin-LR in rice (Oryza sativa). Ecotoxicol. Environ. Saf. 76, 193–199.PubMedGoogle Scholar
  10. 10.
    Chen, J., Song, L., Dai, J., Gan, N., Liu, Z. (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxico. 43, 393–400.Google Scholar
  11. 11.
    Chong, M. W. K., Wong, B. S. E., Lam, P. K. S., Shaw, G. R., Seawright, A. A. (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxico. 40, 205–211.Google Scholar
  12. 12.
    Conrath, U., Pieterse, C. M. J., Mauch-Mani, B. (2002) Priming in plant-pathogen interactions. Trends Plant Sci. 7, 210–216.PubMedGoogle Scholar
  13. 13.
    Demeter, A., Vámosi, J., Peregovits, L., Topál, G. (1995) An image capture and data collection system for morphometric studies. In: Marcus, L. F., Corti, M., Loy, A., Naylor, G., Slice, D. E. (eds) Advances in Morphometries. Plenum Press, New York, pp. 91–101.Google Scholar
  14. 14.
    Erdődi, F., Tóth, B., Hirano, K., Hirano, M., Hartshorne, D. J., Gergely, P. (1995) Endothall thioan-hydride inhibits protein phosphatases-1 and -2A in vivo. Am. J. Physiol. 269, C1176–C1184.PubMedGoogle Scholar
  15. 15.
    Froscio, S. M., Humpage, A. R., Wickramasinghe, W., Shaw, G., Falconer, I. R. (2008) Interaction of the cyanobacterial toxin cylindrospermopsin with the eukaryotic protein synthesis system. Toxico. 51, 191–198.Google Scholar
  16. 16.
    Fukuda, H. (2004) Signals that control plant vascular cell differentiation. Nat. Rev. Mol. Cell Bio. 5, 379–391.Google Scholar
  17. 17.
    Gácsi, M., Antal, O., Vasas, G., Máthé, C., Borbély, G., Saker, M. L., Győri, J., Farkas, A., Vehovszky, Á., Bánfalvi, G. (2009) Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol, in Vitr. 23, 710–718.Google Scholar
  18. 18.
    Gehringer, M. M. (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEES Lett. 557, 1–8.Google Scholar
  19. 19.
    Gergely, P., Erdődi, F., Bot, G. (1984) Heparin inhibits the activity of protein phosphatase-1. FEES Lett. 169, 45–48.Google Scholar
  20. 20.
    Huang, W., Xing, W., Li, D., Liu, Y. (2008) Microcystin-RR induced apoptosis in tobacco BY-2 suspension cells is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Toxicol, in Vitr. 22, 328–337.Google Scholar
  21. 21.
    Kinnear, S. H. W., Fabbro, L. D., Duivenvoorden, L. J. (2008) Variable growth responses of water thyme (Hydrilla verticillata) to whole-cell extracts of Cylindrospermopsis raciborskii. Arc. Environ Contain. Toxicol. 54, 187–194.Google Scholar
  22. 22.
    Kós, R., Gorzó, G., Suranyi, G., Borbély, G. (1995) Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba). Anal. Biochem. 225, 49–53.Google Scholar
  23. 23.
    Kováts, N., Ács, A., Paulovits, G., Vasas, G. (2011) Response of Lemna minor clones to microcystis toxicity. Appl. Ecol. Env. Res. 9, 17–26.Google Scholar
  24. 24.
    Kurki-Helasmo, K., Meriluoto, J. (1998) Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapis alba L.) seedlings. Toxico. 36, 1921–1926.Google Scholar
  25. 25.
    Luan, S. (2003) Protein phosphatases in plants. Annu. Rev. Plant Biol. 42, 63–92.Google Scholar
  26. 26.
    MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., Codd, G. A. (1990) Cyanobacterial microcys-tin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEES Lett. 264, 187–192.Google Scholar
  27. 27.
    Máthé, C., M-Hamvas, M., Vasas, G., Surányi, G., Bácsi, I., Beyer, D., Tóth, S., Tímár, M., Borbely, G. (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryonic calli. New Phyto. 176, 824–835.Google Scholar
  28. 28.
    Máthé, C., Beyer, D., Erdődi, F., Serfőző Z., Székvölgyi, L., Vasas, G., M-Hamvas, M., Jámbrik, K., Gonda, S., Kiss, A., Szigeti Z. M., Suranyi, G. (2009) Microcystin-LR induces abnormal root development by altering its microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. Aquat. Toxicol. 92, 122–130.PubMedGoogle Scholar
  29. 29.
    Metcalf J. S., Barakate, A., Codd, G. A. (2004) Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol. Lett. 235, 125–129.Google Scholar
  30. 30.
    Metcalf, J. S., Lindsay, J., Beattie, K. A., Birmingham, S., Saker, M. L., Törökné, A. K., Codd, G. A. (2002) Toxicity of cylindrospermopsin to the brine shrimp Artemia salina: comparisons with protein synthesis inhibitors and microcystins. Toxico. 40, 1115–1120.Google Scholar
  31. 31.
    M-Hamvas, M., Máthé, Cs., Molnár, E., Vasas, G., Grigorszky, I., Borbely, G. (2003) Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat. Toxicol. 62, 1–9.PubMedGoogle Scholar
  32. 32.
    M-Hamvas, M., Máthé, C., Vasas, G., Jámbrik, K., Papp, M., Beyer, D., Mészaros, I., Borbély, G. (2010) Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biol Hung. 61 (Suppl), 35–48.PubMedGoogle Scholar
  33. 33.
    Padisak, J. (1997) Cylindrospermopsis raciborkii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hidrobiol. Suppl. 4, 563–593.Google Scholar
  34. 34.
    Peuthert, A., Chakrabarti, S., Pflugmacher, S. (2007) Uptake of microcystin-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ. Toxicol. 22, 436–442.Google Scholar
  35. 35.
    Pflugmacher, S. (2004) Promotion of oxidative stress in aquatic macrophyte Ceratophyllum demer-sum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat. Toxicol. 70, 169–178.Google Scholar
  36. 36.
    Prieto, A., Campos, A., Camean, A., Vasconcelos, V. (2011) Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotox. Environ. Safe. 74, 1973–1980.Google Scholar
  37. 37.
    Puerto, M., Campos, A., Prieto, A., Cameán, A., de Almeida, A. M., Coelho, A. V., Vasconcelos, V. (2011) Differential protein expression in two bivalve species: Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat. Toxicol. 101, 109–116.PubMedGoogle Scholar
  38. 38.
    Ros Barceló, A. (1998) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Plant. 207, 207–216.Google Scholar
  39. 39.
    Runnegar, M. T., Kong, S. M., Zhong, Y. Z., Lu, S. C. (1995) Inhibition of reduced glutathion synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem. Pharmacol. 49, 219–225.PubMedGoogle Scholar
  40. 40.
    Smertenko, A. P., Chang, H. Y., Sonobe, S., Fenyk, S. I., Weingartner, M., Bogre, L., Hussey, P. J. (2006) Control of the AtMAP65-l interaction with microtubules through the cell cycle. J. Cell Sci. 119, 3227–3237.PubMedGoogle Scholar
  41. 41.
    Törökné, A. K., László, E., Chorus, I., Fastner, I., Heinze, R., Padisák, J., Barbosa, F. A. R. (2000) Water quality monitoring by Thamnotoxkit F(™) including cyanobacterial blooms. Water Sci. Techno. 42, 381–385.Google Scholar
  42. 42.
    Vasas, G., Cáspár, A., Páger, C., Surányi, G., Máthé, C., M-Hamvas, M., Borbely, G. (2004) Analysis of cyanobacterials toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresi. 25, 108–115.Google Scholar
  43. 43.
    Vasas, G., Gáspár, A., Surányi, G., Batta, G., Gyémánt, G., M-Hamvas, M., Máthé, C., Grigorszky, I., Molnár, E., Borbély, G. (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum by plant test (Blue-Green Sinapis Test). Anal. Biochem. 302, 95–103.Google Scholar
  44. 44.
    Žegura, B., Štraser, A., Filipič, M. (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review. Mutat. Res.-Rev Mutat. 727, 16–41.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Máthé
    • 1
  • G. Vasas
    • 1
  • G. Borbély
    • 1
  • F. Erdődi
    • 2
  • D. Beyer
    • 1
  • Andrea Kiss
    • 2
  • G. Surányi
    • 1
  • S. Gonda
    • 1
  • Katalin Jámbrik
    • 1
  • Márta M-Hamvas
    • 1
    Email author
  1. 1.Department of Botany, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Medical ChemistryMedical and Health Science CenterDebrecenHungary

Personalised recommendations