Advertisement

Acta Biologica Hungarica

, Volume 64, Issue 1, pp 1–9 | Cite as

The Effects of A Wheat Germ Rich Diet on Oxidative Mtdna Damage, mtDNA copy Number and Antioxidant Enzyme Activities in Aging Drosophila

  • Ayse Gul MutluEmail author
Article

Abstract

The free radical theory of aging posits that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. Therefore consumption of dietary antioxidants appears to be of great importance. Wheat germ have strong antioxidant properties. Aim of this study is investigate the effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in Drosophila. Current results suggested that dietary wheat germ enhances the activities of antioxidant enzymes in Drosophila. There was no statistically difference in mtDNA damage and mtDNA copy number results of “Wheat Germ” and “Refined White Flour” feed groups. mtDNA damage slightly increased with aging in both groups but these changes were no statistically different.

Keywords

mtDNA-SOD-catalase GST wheat germ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the Mehmet Akif Ersoy University Scientific Research Projects Unit (0124.NAP.10). Also, I especially thank to Mr. Şeref Dinç.

References

  1. 1.
    Adom, K. K., Sorrells, M. E., Liu, R. H. (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 53, 2297–2306.CrossRefGoogle Scholar
  2. 2.
    Alvarez, P., Alvarado, C., Puerto, M., Schlumberger, A., Jimenez, L., De la Fuente, M. (2006) Improvement of leucocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutritio. 22, 913–921.Google Scholar
  3. 3.
    Ames, B. N., Shigenaga, M. K., Hagen, T. M. (1993) Oxidants, antioxidants and the degenerative diseases of aging. Natl Acad Sci. US. 90, 7915–7922.CrossRefGoogle Scholar
  4. 4.
    Barazzoni, R., Short, K. R., Nair, K. S. (2000) Effects of aging on mitochondrial DNAcopy number and cytochrome coxidase gene expression in rat skeletal muscle, liver and heart. J. Biol. Chem. 275, 3343–3347.CrossRefGoogle Scholar
  5. 5.
    Chang, C. L., Vargas, R. I. (2007) Wheat germ oil and its effects on a liquid larval rearing diet for oriental fruit flies (diphtera:tephritidae). J. Econ. Entomol. 100, 322–326.CrossRefGoogle Scholar
  6. 6.
    Corral-Debrinski, M., Shoffner, J. M., Lott, M. T., Wallace, D. C. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat. Res. 275, 169–180.CrossRefGoogle Scholar
  7. 7.
    Fabian, E., Bogner, M., Elmadfa, I. (2012) Age related modification of antioxidant enzyme activities in relation to cardiovascular risk factors. Eur. J. Clin. Invest. 42, 42–48.CrossRefGoogle Scholar
  8. 8.
    Fujimoto, H., Kobayashi, H., Ohno, M. (2010) Age induced reduction in mitochondrial manganese superoxide dismutase activity and tolerance of macrophages against apoptosis induced by oxidised low density lipoprotein. Circ. J. 74, 353–360.CrossRefGoogle Scholar
  9. 9.
    Gumuslti, S., Bilmen, S., Korgun, D. K., Yargicoglu, P., Agar, A. (2001) Age-related changes in antioxidant enzyme activities and lipid peroxidation in lungs of control and sulfur dioxide exposed rats. Free Radio. Res. 34, 621–627.CrossRefGoogle Scholar
  10. 10.
    Harman, D. (2006) Free radicals in aging. Mol. Cell. Biochem. 84, 155–161.CrossRefGoogle Scholar
  11. 11.
    Judge, S., Jang, Y. M., Smith, A., Hagen, T., Leeuwenbourgh, C. (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASE. 19, 419–421.CrossRefGoogle Scholar
  12. 12.
    Le Bourg, E. (2001) Oxidative stres aging and longevity in Drosophila melanogaster FEBS Letter. 498, 183–186.CrossRefGoogle Scholar
  13. 13.
    Leenhardt, F., Fardet, A., Lyan, B., Gueux, E., Rock, E., Mazur, A., Chanliaud, E., Demigne, C. Remesy, C. (2008) Wheat germ supplementation of a low vitamin E diet in rats affords effective antioxidant protection in tissues. J. Am. Coll. Nutr. 27, 222–228.CrossRefGoogle Scholar
  14. 14.
    Lesnefsky, E. J., Moghaddas, S., Tandler, B., Kerner, J., Hoppel, C. L. (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging and heart failure. J. Mol. Cell. Cardiol. 33, 1065–1089.CrossRefGoogle Scholar
  15. 15.
    Liang, F.-Q., Godley, B. F. (2003) Oxidative stress induced mtDNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and ge-related macular degeneration. Exp. Eye Res. 76, 397–403.CrossRefGoogle Scholar
  16. 16.
    Lim, H., Bodmer, R., Perrin, L. (2006) Drosophila aging 2005-2006. Exp. Gerontol. 41, 1213–1216.CrossRefGoogle Scholar
  17. 17.
    Luck, H. (1963) Catalase. In: Bergmeyer, H. U. (ed.) Methods of Enzymatic Analyses. Academic Press, Weinheim, New York, pp. 885–894.Google Scholar
  18. 18.
    Mates, J. M., Perez-Gomez, C., De Castro, I. N. (1999) Antioxidant enzymes and human diseases. Clinical Biochem. 32, 595–603.CrossRefGoogle Scholar
  19. 19.
    Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygene species toxicology. Toxicol. 153, 83–104.CrossRefGoogle Scholar
  20. 20.
    Miquel, J. (2002) Can antioxidant diet supplementation protect against age-related mitochondrial damage? Ann. N.Y. Acad. Sci. 959, 508–516.CrossRefGoogle Scholar
  21. 21.
    Missirlis, F., Phillips, J. P., Jackie, H. (2001) Cooperative action of antioxidant defense systems in Drosophila. Curr. Biol. 11, 1212–1211.CrossRefGoogle Scholar
  22. 22.
    Mutlu, A. G., Fiskin, K. (2009) Can vitamin E and selenium prevent cigarette smoke-derived oxidative mtDNA damage? Turk. J. Biochem. 34, 167–172.Google Scholar
  23. 23.
    Mutlu, A. G., Dukel, M. (2010) Effects of two important components related with mitochondria: CoQIO and acetyl 1 carnitine in antioxidant enzyme activities. Journal of Animal and Veterinary Advance. 9, 3109–3113.CrossRefGoogle Scholar
  24. 24.
    Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., Reiter, R. J. (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal. Res. 36, 1–9.CrossRefGoogle Scholar
  25. 25.
    Santos, J. H., Mandavilli, B. S., Van Houten, B. (2002) Measuring oxidative mtDNA damage and repair using QPCR. In: Copeland, W. C. (ed.) Mitochondrial DNA Methods and Protocols. Humana Press Inc, Totawa NJ, pp. 159–176.CrossRefGoogle Scholar
  26. 26.
    Tiana, L., Caib, Q., Wei, H. (1998) The activities of antioxidant enzymes in most tissues displayed an age dependent decline. Free Radic. Biol. Med. 24, 1477–1484.CrossRefGoogle Scholar
  27. 27.
    Tu, C. P., Akgul, B. (2005) Drosophila glutathione S transferases. Methods Enzymol. 401, 204–226.CrossRefGoogle Scholar
  28. 28.
    Venkatraman, A., Landar, A., Davis, A. J., Chamlee, L., Sandersoni, T., Kim, H., Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S. M. (2004) Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatoxicity. J. Biol. Chem. 279, 22092–22101.CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Liu, V. W., Xue, W. C., Tsang, P. C., Cheung, A. N., Ngan, H. Y. (2005) The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 98, 104–110.CrossRefGoogle Scholar
  30. 30.
    Yakes, F. M., Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. US. 94, 514–519.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of BiologyMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations