The Effects of A Wheat Germ Rich Diet on Oxidative Mtdna Damage, mtDNA copy Number and Antioxidant Enzyme Activities in Aging Drosophila


The free radical theory of aging posits that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. Therefore consumption of dietary antioxidants appears to be of great importance. Wheat germ have strong antioxidant properties. Aim of this study is investigate the effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in Drosophila. Current results suggested that dietary wheat germ enhances the activities of antioxidant enzymes in Drosophila. There was no statistically difference in mtDNA damage and mtDNA copy number results of “Wheat Germ” and “Refined White Flour” feed groups. mtDNA damage slightly increased with aging in both groups but these changes were no statistically different.


  1. 1.

    Adom, K. K., Sorrells, M. E., Liu, R. H. (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 53, 2297–2306.

    CAS  Article  Google Scholar 

  2. 2.

    Alvarez, P., Alvarado, C., Puerto, M., Schlumberger, A., Jimenez, L., De la Fuente, M. (2006) Improvement of leucocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutritio. 22, 913–921.

    CAS  Google Scholar 

  3. 3.

    Ames, B. N., Shigenaga, M. K., Hagen, T. M. (1993) Oxidants, antioxidants and the degenerative diseases of aging. Natl Acad Sci. US. 90, 7915–7922.

    CAS  Article  Google Scholar 

  4. 4.

    Barazzoni, R., Short, K. R., Nair, K. S. (2000) Effects of aging on mitochondrial DNAcopy number and cytochrome coxidase gene expression in rat skeletal muscle, liver and heart. J. Biol. Chem. 275, 3343–3347.

    CAS  Article  Google Scholar 

  5. 5.

    Chang, C. L., Vargas, R. I. (2007) Wheat germ oil and its effects on a liquid larval rearing diet for oriental fruit flies (diphtera:tephritidae). J. Econ. Entomol. 100, 322–326.

    CAS  Article  Google Scholar 

  6. 6.

    Corral-Debrinski, M., Shoffner, J. M., Lott, M. T., Wallace, D. C. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat. Res. 275, 169–180.

    CAS  Article  Google Scholar 

  7. 7.

    Fabian, E., Bogner, M., Elmadfa, I. (2012) Age related modification of antioxidant enzyme activities in relation to cardiovascular risk factors. Eur. J. Clin. Invest. 42, 42–48.

    CAS  Article  Google Scholar 

  8. 8.

    Fujimoto, H., Kobayashi, H., Ohno, M. (2010) Age induced reduction in mitochondrial manganese superoxide dismutase activity and tolerance of macrophages against apoptosis induced by oxidised low density lipoprotein. Circ. J. 74, 353–360.

    CAS  Article  Google Scholar 

  9. 9.

    Gumuslti, S., Bilmen, S., Korgun, D. K., Yargicoglu, P., Agar, A. (2001) Age-related changes in antioxidant enzyme activities and lipid peroxidation in lungs of control and sulfur dioxide exposed rats. Free Radio. Res. 34, 621–627.

    Article  Google Scholar 

  10. 10.

    Harman, D. (2006) Free radicals in aging. Mol. Cell. Biochem. 84, 155–161.

    Article  Google Scholar 

  11. 11.

    Judge, S., Jang, Y. M., Smith, A., Hagen, T., Leeuwenbourgh, C. (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASE. 19, 419–421.

    CAS  Article  Google Scholar 

  12. 12.

    Le Bourg, E. (2001) Oxidative stres aging and longevity in Drosophila melanogaster FEBS Letter. 498, 183–186.

    Article  Google Scholar 

  13. 13.

    Leenhardt, F., Fardet, A., Lyan, B., Gueux, E., Rock, E., Mazur, A., Chanliaud, E., Demigne, C. Remesy, C. (2008) Wheat germ supplementation of a low vitamin E diet in rats affords effective antioxidant protection in tissues. J. Am. Coll. Nutr. 27, 222–228.

    CAS  Article  Google Scholar 

  14. 14.

    Lesnefsky, E. J., Moghaddas, S., Tandler, B., Kerner, J., Hoppel, C. L. (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging and heart failure. J. Mol. Cell. Cardiol. 33, 1065–1089.

    CAS  Article  Google Scholar 

  15. 15.

    Liang, F.-Q., Godley, B. F. (2003) Oxidative stress induced mtDNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and ge-related macular degeneration. Exp. Eye Res. 76, 397–403.

    CAS  Article  Google Scholar 

  16. 16.

    Lim, H., Bodmer, R., Perrin, L. (2006) Drosophila aging 2005-2006. Exp. Gerontol. 41, 1213–1216.

    CAS  Article  Google Scholar 

  17. 17.

    Luck, H. (1963) Catalase. In: Bergmeyer, H. U. (ed.) Methods of Enzymatic Analyses. Academic Press, Weinheim, New York, pp. 885–894.

    Google Scholar 

  18. 18.

    Mates, J. M., Perez-Gomez, C., De Castro, I. N. (1999) Antioxidant enzymes and human diseases. Clinical Biochem. 32, 595–603.

    CAS  Article  Google Scholar 

  19. 19.

    Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygene species toxicology. Toxicol. 153, 83–104.

    CAS  Article  Google Scholar 

  20. 20.

    Miquel, J. (2002) Can antioxidant diet supplementation protect against age-related mitochondrial damage? Ann. N.Y. Acad. Sci. 959, 508–516.

    CAS  Article  Google Scholar 

  21. 21.

    Missirlis, F., Phillips, J. P., Jackie, H. (2001) Cooperative action of antioxidant defense systems in Drosophila. Curr. Biol. 11, 1212–1211.

    Article  Google Scholar 

  22. 22.

    Mutlu, A. G., Fiskin, K. (2009) Can vitamin E and selenium prevent cigarette smoke-derived oxidative mtDNA damage? Turk. J. Biochem. 34, 167–172.

    CAS  Google Scholar 

  23. 23.

    Mutlu, A. G., Dukel, M. (2010) Effects of two important components related with mitochondria: CoQIO and acetyl 1 carnitine in antioxidant enzyme activities. Journal of Animal and Veterinary Advance. 9, 3109–3113.

    CAS  Article  Google Scholar 

  24. 24.

    Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., Reiter, R. J. (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal. Res. 36, 1–9.

    CAS  Article  Google Scholar 

  25. 25.

    Santos, J. H., Mandavilli, B. S., Van Houten, B. (2002) Measuring oxidative mtDNA damage and repair using QPCR. In: Copeland, W. C. (ed.) Mitochondrial DNA Methods and Protocols. Humana Press Inc, Totawa NJ, pp. 159–176.

    Chapter  Google Scholar 

  26. 26.

    Tiana, L., Caib, Q., Wei, H. (1998) The activities of antioxidant enzymes in most tissues displayed an age dependent decline. Free Radic. Biol. Med. 24, 1477–1484.

    Article  Google Scholar 

  27. 27.

    Tu, C. P., Akgul, B. (2005) Drosophila glutathione S transferases. Methods Enzymol. 401, 204–226.

    CAS  Article  Google Scholar 

  28. 28.

    Venkatraman, A., Landar, A., Davis, A. J., Chamlee, L., Sandersoni, T., Kim, H., Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S. M. (2004) Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatoxicity. J. Biol. Chem. 279, 22092–22101.

    CAS  Article  Google Scholar 

  29. 29.

    Wang, Y., Liu, V. W., Xue, W. C., Tsang, P. C., Cheung, A. N., Ngan, H. Y. (2005) The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 98, 104–110.

    CAS  Article  Google Scholar 

  30. 30.

    Yakes, F. M., Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. US. 94, 514–519.

    CAS  Article  Google Scholar 

Download references


This study was supported by the Mehmet Akif Ersoy University Scientific Research Projects Unit (0124.NAP.10). Also, I especially thank to Mr. Şeref Dinç.

Author information



Corresponding author

Correspondence to Ayse Gul Mutlu.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Mutlu, A.G. The Effects of A Wheat Germ Rich Diet on Oxidative Mtdna Damage, mtDNA copy Number and Antioxidant Enzyme Activities in Aging Drosophila. BIOLOGIA FUTURA 64, 1–9 (2013).

Download citation


  • mtDNA-SOD-catalase
  • GST
  • wheat germ