Acta Biologica Hungarica

, Volume 63, Supplement 1, pp 80–88 | Cite as

Regulatory Processes of Hunger Motivated Behavior

  • L. LénárdEmail author
  • Z. Karádi


While food intake and body weight are under homeostatic regulation, eating is a highly motivated and reinforced behavior that induces feelings of gratification and pleasure. The chemical senses (taste and odor) and their evaluation are essential to these functions. Brainstem and limbic glucose-monitoring (GM) neurons receiving neurochemical information from the periphery and from the local brain milieu are important controlling hunger motivation, and brain gut peptides have a modulatory role on this function. The hypothalamic and limbic forebrain areas are responsible for evaluation of reward quality and related emotions. They are innervated by the mesolimbic dopaminergic system (MLDS) and majority of GM neurons are also influenced by dopamine. Via dopamine release, the MLDS plays an essential role in rewarding-reinforcing processes of feeding and addiction. The GM network and the MLDS in the limbic system represent essential elements in the neural substrate of motivation.


Hunger motivation glucose-monitoring network taste information processing dopamine reward 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlskog, J. E. (1974) Food intake and amphetamine anorexia after selective forebrain norepinephrine loss. Brain Res. 82, 211–240.CrossRefGoogle Scholar
  2. 2.
    Anand, B.K., Brobeck, J. R. (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77, 323–324.CrossRefGoogle Scholar
  3. 3.
    Aou, S., Oomura, Y., Lénárd, L., Nishino, H., Inokuchi, A., Minami, T., Misaki, H. (1984) Behavioral significance of monkey hypothalamic glucose-sensitive neurons. Brain Res. 302, 69–74.CrossRefGoogle Scholar
  4. 4.
    Bindra, D. (1968) A unified interpretation of emotion and motivation. Ann. N. Y. Acad. Sci. 159, 1071–1083.CrossRefGoogle Scholar
  5. 5.
    Fekete, E., Bagi, E.E., Tóth, K., Lénárd, L. (2007) Neuromedin C microinjected into the amygdala inhibits feeding. Brain Res. Bull. 71, 386–392.CrossRefGoogle Scholar
  6. 6.
    Fibiger, H. C., Phillips, A. G. (1987) Role of catecholamine transmitters in brain reward systems: Implication for neurobiology of affect. In: Engel, J., Oreland, L. (eds) Brain Reward Systems and Abuse. Raven Press, New York, pp. 61–74.Google Scholar
  7. 7.
    Fonberg, E. (1974) Amygdala functions within the alimentary system. Acta Neurobiol. Exp. (Wars. 34, 435–466.Google Scholar
  8. 8.
    Funashi, M., Adachi, A. (1993) Glucose-responsive neurons exist within the area postrema of the rat: In vitro study on the isolated slice preparation. Brain Res. Bull. 32, 531–535.CrossRefGoogle Scholar
  9. 9.
    Hajnal, A., Lénárd, L. (1997) Feeding-related changes in extracellular dopamine in the amygdala of freely moving rats. Neurorep. 8, 2817–2820.CrossRefGoogle Scholar
  10. 10.
    Hajnal, A., Mark, G., Rada, P., Lénárd, L., Hoebel, B. G. (1997) Norepinephrine microinjections in the hypothalamic paraventricular nucleus increase extracellular dopamine and decrease acetylcholine in the nucleus accumbens: Relevance to feeding behavior. J. Neurochem. 68, 667–674.CrossRefGoogle Scholar
  11. 11.
    Hernandez, L., Hoebel, B. G. (1988) Food reward and cocaine increase EC dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 42, 1705–1712.CrossRefGoogle Scholar
  12. 12.
    Hernandez, L., Hoebel, B. G. (1990) Feeding can enhance dopamine turnover in the prefrontal cortex. Brain Res. Bull. 25, 978–979.Google Scholar
  13. 13.
    Hoebel, B. G., Monaco, A. P., Hernandez, L., Stanley, B.G., Aulisi, E. F., Lénárd, L. (1983) Self-injection of amphetamine directly into the brain. Psychopharmacol. 81, 158–164.CrossRefGoogle Scholar
  14. 14.
    Hull, C. L. (1943) Principles of Behaviour. Appleton-Century-Crofts, New York.Google Scholar
  15. 15.
    Jones, B., Mishkin, M. (1972) Limbic lesions and the problem of stimulus-reinforcement associations. Exp. Neurol. 36, 362–377.CrossRefGoogle Scholar
  16. 16.
    Karádi, Z., Oomura, Y., Nishino, H., Scott, T.R., Lénárd, L., Aou, S. (1992) Responses of lateral hyptohalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkeys. J. Neurophysiol. 67, 389–400.CrossRefGoogle Scholar
  17. 17.
    Karádi, Z., Faludi, B., Vida, L., Czurkó, A., Niedetzky, Cs., Sándor, R., Lénárd, L., Nishino, H. (1995) Glucose-sensitive neurons of the globus pallidus: II. Complex functional attributes. Brain Res. Bull. 37, 157–162.CrossRefGoogle Scholar
  18. 18.
    Karádi, Z., Scott, T.R., Oomura, Y., Nishino, H., Aou, S., Lénárd, L. (1998) Complex functional attributes of amygdaloid gustatory neurons in the rhesus monkey. Ann. N. Y. Acad Sci. 855, 488–493.CrossRefGoogle Scholar
  19. 19.
    Kennedy, G. C. (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc. Roy. Soc. 140, 578–592.CrossRefGoogle Scholar
  20. 20.
    King, B. F. (1991) Bombesin and satiety. NIP. 6, 177–180.Google Scholar
  21. 21.
    Ladenheim, E.E., Ritter, E. C. (1988) Low dose fourth ventricular bombesin selectively suppresses food intake. Am. J. Physiol. 255, R988–R992.PubMedGoogle Scholar
  22. 22.
    Lénárd, L. (1977) Sex-dependent body weight loss after bilateral 6-hydroxydopamine injection into the globus pallidus. Brain Res. 128, 559–568.CrossRefGoogle Scholar
  23. 23.
    Lénárd, L., Hahn, Z. (1982) Amygdalar noradrenergic and dopaminergic mechanisms in the regulation of hunger and thirst-motivated behavior. Brain Res. 233, 115–132.CrossRefGoogle Scholar
  24. 24.
    Lénárd, L., Oomura, Y., Nishino, H., Aou, S., Nakano, Y., Yamamoto, T. (1986) Activity in monkey lateral hypothalamus during operant feeding. Modulation by catcholamines and opiate. In: Oomura, Y (ed.) Emotions: Neuronal and Chemical Control, Japan Sci. Soc. Press, Karger S, AG, Tokyo/ Basel, pp. 45–53.Google Scholar
  25. 25.
    Lénárd, L., Karádi, Z., Faludi, B., Czurkó, A., Niedetzky, Cs., Vida, I., Nishinoo, H. (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res. Bull. 37, 149–155.CrossRefGoogle Scholar
  26. 26.
    Mayer, J. (1955) Regulation of energy intake and the body weight. The glucostatic theory and the lipostatic hypothesis. Ann. N. Y. Acad. Sci. 63, 15–43.CrossRefGoogle Scholar
  27. 27.
    Mellinkoff, S.M., Frankland, M., Boyle, D., Greipel, M. (1956) Relationship between serum amino acid concentration and fluctuation in appetite. J. Appl. Physiol. 8, 535–538.CrossRefGoogle Scholar
  28. 28.
    Nakano, Y., Oomura, Y., Lénárd, L., Nishino, H., Aou, S., Yamamoto, T., Aoyagi, K. (1986) Feeding-related activity of glucose- and mophine-sensitive neurons in the monkey amygdala. Brain Res. 399, 167–172.CrossRefGoogle Scholar
  29. 29.
    Nakano, Y., Lénárd, L., Oomura, Y., Nishino, H., Aou, S., Yamamoto, T. (1987) Functional involvement of catecholamines in reward-related neuronal activity of monkey amygdala. J. Neurophysiol. 57, 72–91.CrossRefGoogle Scholar
  30. 30.
    Niijima, A. (1969) Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Ann. N. Y. Acad Sci. 157, 690–700.CrossRefGoogle Scholar
  31. 31.
    Oomura, Y., Ono, T., Ooyama, H., Wayner, W. J. (1969) Glucose and osmosensitive neurons of the rat hypothalamus. Natur. 222, 282–284.CrossRefGoogle Scholar
  32. 32.
    Oomura, Y., Nishino, H., Aou, S., Lénárd, L. (1986) Opiate mechanism in reward related neuronal responses during operant feeding behavior of the monkey. Brain Res. 365, 335–339.CrossRefGoogle Scholar
  33. 33.
    Pothos, E., Rada, R., Mark, G.P., Hoebel, B. G. (1991) Dopamine microdialysis in the nucleus accum-bens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 566, 348–350.CrossRefGoogle Scholar
  34. 34.
    Rolls, E.T., Critchley, H.D., Browning, A.S., Hernádi, I., Lénárd, L. (1999) Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci. 19, 1532–1540.CrossRefGoogle Scholar
  35. 35.
    Schultz, W., Apicella, P., Ljundberg, T. (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning and delayed response task. J. Neurosci. 13, 900–913.CrossRefGoogle Scholar
  36. 36.
    Turner, B. H., Mishkin, M., Knapp, M. (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J. Comp. Neurol. 191, 515–543.CrossRefGoogle Scholar
  37. 37.
    Ungerstedt, U. (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. Suppl. 367, 95–122.CrossRefGoogle Scholar
  38. 38.
    Wauquier, A., Niemegeers, C. J. (1981) Effects of clopheramine, pyrilamine and astemizole on intracranial self-stimulation. Eur. J. Pharmacol. 72, 245–248.CrossRefGoogle Scholar
  39. 39.
    Willner, P., Scheel-Kriiger, J. (1991) The Mesolimbic Dopamine System: From Motivation to Action. Wiely Publishing Co., Chichester.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Neurophysiology Research Group of the Hungarian Academy of Sciences and Institute of PhysiologyPécs University, Medical SchoolPécsHungary

Personalised recommendations