Advertisement

Acta Biologica Hungarica

, Volume 63, Issue 4, pp 441–452 | Cite as

Whole Body Static Magnetic Field Exposure Increases Thermal Nociceptive Threshold in the Snail, helix Pomatia

  • J. F. LászlóEmail author
  • L. Hernádi
Article
  • 1 Downloads

Abstract

We investigated the effect of homogeneous and inhomogeneous static magnetic field (SMF) exposure on the thermal nociceptive threshold of snail in the hot plate test (43 °C). Both homogeneous (hSMF) and inhomogeneous (iSMF) SMF increased the thermo-nociceptive threshold: 40.2%, 29.2%, or 41.7% after an exposure of 20, 30, or 40 min hSMF by p<0.001, p<0.0001, or p<0.001, and 32.7% or 46.2% after an exposure of 20 or 40 min iSMF by p<0.05 or p<0.0001. These results suggest that SMF has an antinociceptive effect in snail. On the other hand, naloxone as an atypical opioid antagonist in an amount of 1 μg/g was found to significantly decrease the thermo-nociceptive threshold (41.9% by p<0.002), which could be antagonized by hSMF exposure implying that hSMF exerts its antinociceptive effect partly via opioid receptors.

Keywords

Static magnetic field (SMF) nociception naloxone analgesia opioid receptors-snail 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors are grateful to Prof. Zs. Fürst and Dr. M. Al-Khrasani for their kind contribution to the measurements.

References

  1. 1.
    Achaval, M., Penha, M. A. P., Swarowsky, A., Rigon, P., Xavier, L. L., Viola, G. G., Zancan, D. M. (2005) The terrestrial gastropoda Megalobulimus abbreviates as a useful model for nociceptive experiments. Effects of morphine and naloxone on thermal avoidance behavior. Brazilian J. Med Biol. Res. 38, 73–80.Google Scholar
  2. 2.
    Balaban, P. M., Bravarenko, N. I., Kuznetzov, A. N. (1990) Influence of stationary magnetic field on bioelectric properties of snail neurons. Bioelectromagnetics 11, 13–25.PubMedGoogle Scholar
  3. 3.
    Burrowes, W. R., Assanah, P., Stefano, G. B. (1983) Behavioral effects of opiates on the land snail Helix aspersa. Life Sci. 33S1, 381–384.Google Scholar
  4. 4.
    Chase, R. (2002) Behavior and its neural control in gastropod mollusks. Oxford Univ. Press.Google Scholar
  5. 5.
    Crozier, S., Trakic, A., Wang, H., Liu, F. (2007) Numerical study of currents in workers induced by body-motion around high-ultrahigh field magnets. J. Magn. Res. Imaging 26, 1261–1277.Google Scholar
  6. 6.
    Del Seppia, C., Ghionea, S., Luschib, P., Ossenkopp, K. P., Choleris, E., Kavaliers, M. (2007) Pain perception and electromagnetic fields. Neurosc. Biobehav. R. 31, 619–642.Google Scholar
  7. 7.
    Elekes, K., Stefano, G. B., Carpenter, D. O. (1993) Enkephalin-like immunoreactive neurons in the central nervous system of gastropods (Helix pomatia, Lymnaea stagnalis, Aplysia californica): a comparative immunocytochemical study. Cell Tiss. Res. 272, 329–341.Google Scholar
  8. 8.
    Gyires, K., Zadori, Z. S., Racz, B., Laszlo, J. (2008) Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse. Bioelectromagnetics 29, 456–162.PubMedGoogle Scholar
  9. 9.
    Hernadi, L., Vehovszky, A., Gyori, J., Hiripi, L. (2008) Neuronal background of activation of aesti-vated snails. With special attention to the monoaminergic system: a biochemical, physiological, and neuroanatomical study. Cell Tiss. Res. 331, 539–553.Google Scholar
  10. 10.
    Houpt, T. A., Pitman, D. M., Barranco, J. M., Brooks, E. H., Smith, J. C. (2003) Behavioral effects of high strength magnetic fields on rats. J. Neurosci. 23, 1498–1505.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jokela, K., Saunders, R. D. (2011) Physiologic and dosimetric considerations for limiting electric fields induced in the body by movement in a static magnetic field. Health Rhys. 100(6), 641–653.Google Scholar
  12. 12.
    Kavaliers, M. (1987) Evidence for opioid and non opioid forms of stress-induced analgesia in the snail, Cepaea nemoralis. Brain Res. 410, 111–115.PubMedGoogle Scholar
  13. 13.
    Kavaliers, M. (1988) Novelty-induced opioid analgesia in the terrestrial snail, Cepeaa nemoralis. Physiol. Behav. 42, 29–32.PubMedGoogle Scholar
  14. 14.
    Kavaliers, M., Hirst, M. (1986) Naloxon-reversible stress-induced feeding and analgesia in the slug Limax maximus. Life Sci. 38, 203–209.PubMedGoogle Scholar
  15. 15.
    Kavaliers, M., Hirst, M., Teskey, G. C. (1983) Afunctional role for an opiate system in snail thermal behavior. Science 220, 99–101.PubMedGoogle Scholar
  16. 16.
    Kavaliers, M., Ossenkopp, K. P. (1988) Magnetic fields inhibit opioid-mediated analgesic behaviors of the terrestrial snail, Cepaea nemoralis. J. Comp. Physiol. A 162, 551–558.PubMedGoogle Scholar
  17. 17.
    Kavaliers, M., Ossenkopp, K. P., Lipa, S. M. (1990) Day-night rhythms in the inhibitory effects of 60 Hz magnetic fields on opiate mediated analgesic behaviors of the land snail, Cepaea nemoralis. Brain Res. 517, 276–282.PubMedGoogle Scholar
  18. 18.
    Kavaliers, M., Teppermann, F. S. (1988) Exposure to novel odors induces opioid-mediated analgesia in the land snail, Cepaea nemoralis. Behav. Neural. Biol. 50, 285–299.PubMedGoogle Scholar
  19. 19.
    Kovacs-Balint, Zs., Csatho, A., Laszlo, J. F., Juhasz, P., Hernadi, I. (2011) Exposure to an inhomogeneous static magnetic field increases thermal pain threshold in healthy human volunteers. Bioelectromagnetics 32, 131–139.PubMedGoogle Scholar
  20. 20.
    Laszlo, J. F. (2011) External static magnetic field as a device for self-motion perception: A pathophysiological rodent model and its consequences. Horizons in Neuroscience Research. Volume 5 (Eds. A Costa, E Villalba) Nova Science Publishers, Hauppauge, NY, USA, pp. 106–124.Google Scholar
  21. 21.
    Laszlo, J., Reiczigel, J., Szekely, L., Gasparics, A., Bogar, I., Bors, L., Racz, B., Gyires, K. (2007) Optimization of static magnetic field parameters improves analgesic effect in mice. Bioelectromagnetics 25, 615–627.Google Scholar
  22. 22.
    Laszlo, J., Timar, J., Gyarmati, Zs., Fiirst, Zs., Gyires, K. (2009) Pain-inhibiting inhomogeneous static magnetic field fails to influence locomotor activity and anxiety behaviour in mice: no interference between magnetic field- and morphine-treatment. Brain Res. Bull. 79, 316–321.PubMedGoogle Scholar
  23. 23.
    Laszlo, J. F., Gyires, K. (2009) 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sciences 841—2, 12–17.PubMedGoogle Scholar
  24. 24.
    Miller-Perez, C., Sanzes-Islas, E., Pellicer, F., Rodriguez-Manzo, G., Cruz, S. L., Leon-Olea, M. (2008) Role of nociceptin/orphanin FQ and the pseudopeptide [Phe1 <P(CH2NH) Gly2]-nociceptin (1-13)-NH2 and their interaction with classic opioids in the modulation of thermonociception in the land snail Helix aspersa. E. J. Pharmacol. 581, 77–85.Google Scholar
  25. 25.
    Nikolic, L., Kartelija, G., Nedeljkovic, M. (2008) Effect of static magnetic fields on bioelectric properties of the Br and Nl neurons of snail Helix pomatia. Comp. Biochem. Physiol. A 151, 657–663.Google Scholar
  26. 26.
    Norekian, T. P., Sakharov, D. A. (1991) Mechanoreception in the pteropod mollusk Clione limachina: tactile inputs are blocked by opiate anatagonist. Sensory Systemy 5, 5–11.Google Scholar
  27. 27.
    Pivovarov, A. S. (1993) Differently directed modulation of cholinoreceptor plasticity of RPa3 and LPa3 neurons by opiate mu and kappa agonists in the common snail. Zh. Vyssh. Nerv. Deyat. 43, 826–836.Google Scholar
  28. 28.
    Prato, F. S., Kavaliers, M., Carson, J. L. (1996) Behavioural responses to magnetic fields by land snails are dependent on both magnetic field direction and light. Proc. Roy Soc. LB 263, 1437–1442.Google Scholar
  29. 29.
    Prato, F. S., Kavaliers, M., Thomas, A. W. (2000) Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21, 287–301.PubMedGoogle Scholar
  30. 30.
    Rosen, A. D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. C 262, 1418–1422.Google Scholar
  31. 31.
    Rosen, A. D. (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149–155.PubMedGoogle Scholar
  32. 32.
    Rosen, A. D. (2003) Effects of 125 mT magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24, 517–523.PubMedGoogle Scholar
  33. 33.
    Rosen, A. D. (2003) Mechanism of action of moderate intensity static magnetic fields on biological systems. Cell Biochem. Biophysics 39, 163–173.Google Scholar
  34. 34.
    Rozsa, K. S., Solntseva, E. J. (1986) Modulation of cholinergic transmission by opiate peptide and FMRFamide on identified neurons of Helix pomatia L. (Gastropoda, Mollusca). Acta Physiol. Hung. 67, 429–133.PubMedGoogle Scholar
  35. 35.
    Saksida, L. M., Galea, L. A., Kavaliers, M. (1993) Antinociceptive effects of the enkephalinase inhibitor, SCH 34826, in the snail, Cepaea nemoralis. Peptides 14, 763–765.PubMedGoogle Scholar
  36. 36.
    Satow, Y., Matsunami, K, Kawashima, T., Satake, H., Huda, K. (2001) A strong constant magnetic fieldaffectsmuscletensiondevelopmentinthe bullfrog neuromuscular preparation. Bioelectromagnetics 22, 53–59.PubMedGoogle Scholar
  37. 37.
    Satow, Y., Satake, H., Matsunami, K. (1990) Effect of long exposure to large static magnetic field on the recovery process of bullfrog sciatic nerve activity. Proc. Jpn. Acad. 66, 151–155.Google Scholar
  38. 38.
    Shellock, F. G., Crues, J. V. (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232, 635–652.PubMedGoogle Scholar
  39. 39.
    Sonetti, D., Mola, L., Casares, F., Bianchi, E., Guarna, M., Stefano, G. B. (1999) Endogenous morphine levels increase in molluscan neural and immune tissues after physical trauma. Brain Res. 835, 137–147.PubMedGoogle Scholar
  40. 40.
    Stefano, G. B., Salzet, M. (1999) Invertebrate opioid precursors: evolutionary conservation and the significance of enzymatic processing. Int. Rev. Cytol. 187, 261–286.PubMedGoogle Scholar
  41. 41.
    Stefano, G. B., Vadasz, I., Hiripi, L. (1980) Methionine enkephalin inhibits the bursting activity of the Br type neuron in Helix pomatia L. Experientia 15, 666–667.Google Scholar
  42. 42.
    Thomas, A. W., Kavaliers, M., Prato, F. S., Ossenkopp, K. P. (1997) Pulsed magnetic field induced analgesia in the land snail Cepaea nemoralis, and the effect of u, S, and K opioid receptor agonist/ antagonist. Peptides 18, 703–709.Google Scholar
  43. 43.
    Waldhoer, M, Bartlett, S. E., Whistler, J. L. (2004) Opioid receptors. Ann. Rev. Biochem. 73, 953–990.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Probability TheoryUniversity of DebrecenDebrecenHungary
  2. 2.Department of Experimental Zoology, Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary

Personalised recommendations