Whole Body Static Magnetic Field Exposure Increases Thermal Nociceptive Threshold in the Snail, helix Pomatia

Abstract

We investigated the effect of homogeneous and inhomogeneous static magnetic field (SMF) exposure on the thermal nociceptive threshold of snail in the hot plate test (43 °C). Both homogeneous (hSMF) and inhomogeneous (iSMF) SMF increased the thermo-nociceptive threshold: 40.2%, 29.2%, or 41.7% after an exposure of 20, 30, or 40 min hSMF by p<0.001, p<0.0001, or p<0.001, and 32.7% or 46.2% after an exposure of 20 or 40 min iSMF by p<0.05 or p<0.0001. These results suggest that SMF has an antinociceptive effect in snail. On the other hand, naloxone as an atypical opioid antagonist in an amount of 1 μg/g was found to significantly decrease the thermo-nociceptive threshold (41.9% by p<0.002), which could be antagonized by hSMF exposure implying that hSMF exerts its antinociceptive effect partly via opioid receptors.

References

  1. 1.

    Achaval, M., Penha, M. A. P., Swarowsky, A., Rigon, P., Xavier, L. L., Viola, G. G., Zancan, D. M. (2005) The terrestrial gastropoda Megalobulimus abbreviates as a useful model for nociceptive experiments. Effects of morphine and naloxone on thermal avoidance behavior. Brazilian J. Med Biol. Res. 38, 73–80.

    CAS  Google Scholar 

  2. 2.

    Balaban, P. M., Bravarenko, N. I., Kuznetzov, A. N. (1990) Influence of stationary magnetic field on bioelectric properties of snail neurons. Bioelectromagnetics 11, 13–25.

    CAS  PubMed  Google Scholar 

  3. 3.

    Burrowes, W. R., Assanah, P., Stefano, G. B. (1983) Behavioral effects of opiates on the land snail Helix aspersa. Life Sci. 33S1, 381–384.

    Google Scholar 

  4. 4.

    Chase, R. (2002) Behavior and its neural control in gastropod mollusks. Oxford Univ. Press.

    Google Scholar 

  5. 5.

    Crozier, S., Trakic, A., Wang, H., Liu, F. (2007) Numerical study of currents in workers induced by body-motion around high-ultrahigh field magnets. J. Magn. Res. Imaging 26, 1261–1277.

    Google Scholar 

  6. 6.

    Del Seppia, C., Ghionea, S., Luschib, P., Ossenkopp, K. P., Choleris, E., Kavaliers, M. (2007) Pain perception and electromagnetic fields. Neurosc. Biobehav. R. 31, 619–642.

    Google Scholar 

  7. 7.

    Elekes, K., Stefano, G. B., Carpenter, D. O. (1993) Enkephalin-like immunoreactive neurons in the central nervous system of gastropods (Helix pomatia, Lymnaea stagnalis, Aplysia californica): a comparative immunocytochemical study. Cell Tiss. Res. 272, 329–341.

    Google Scholar 

  8. 8.

    Gyires, K., Zadori, Z. S., Racz, B., Laszlo, J. (2008) Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse. Bioelectromagnetics 29, 456–162.

    PubMed  Google Scholar 

  9. 9.

    Hernadi, L., Vehovszky, A., Gyori, J., Hiripi, L. (2008) Neuronal background of activation of aesti-vated snails. With special attention to the monoaminergic system: a biochemical, physiological, and neuroanatomical study. Cell Tiss. Res. 331, 539–553.

    CAS  Google Scholar 

  10. 10.

    Houpt, T. A., Pitman, D. M., Barranco, J. M., Brooks, E. H., Smith, J. C. (2003) Behavioral effects of high strength magnetic fields on rats. J. Neurosci. 23, 1498–1505.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jokela, K., Saunders, R. D. (2011) Physiologic and dosimetric considerations for limiting electric fields induced in the body by movement in a static magnetic field. Health Rhys. 100(6), 641–653.

    CAS  Google Scholar 

  12. 12.

    Kavaliers, M. (1987) Evidence for opioid and non opioid forms of stress-induced analgesia in the snail, Cepaea nemoralis. Brain Res. 410, 111–115.

    CAS  PubMed  Google Scholar 

  13. 13.

    Kavaliers, M. (1988) Novelty-induced opioid analgesia in the terrestrial snail, Cepeaa nemoralis. Physiol. Behav. 42, 29–32.

    CAS  PubMed  Google Scholar 

  14. 14.

    Kavaliers, M., Hirst, M. (1986) Naloxon-reversible stress-induced feeding and analgesia in the slug Limax maximus. Life Sci. 38, 203–209.

    CAS  PubMed  Google Scholar 

  15. 15.

    Kavaliers, M., Hirst, M., Teskey, G. C. (1983) Afunctional role for an opiate system in snail thermal behavior. Science 220, 99–101.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kavaliers, M., Ossenkopp, K. P. (1988) Magnetic fields inhibit opioid-mediated analgesic behaviors of the terrestrial snail, Cepaea nemoralis. J. Comp. Physiol. A 162, 551–558.

    CAS  PubMed  Google Scholar 

  17. 17.

    Kavaliers, M., Ossenkopp, K. P., Lipa, S. M. (1990) Day-night rhythms in the inhibitory effects of 60 Hz magnetic fields on opiate mediated analgesic behaviors of the land snail, Cepaea nemoralis. Brain Res. 517, 276–282.

    CAS  PubMed  Google Scholar 

  18. 18.

    Kavaliers, M., Teppermann, F. S. (1988) Exposure to novel odors induces opioid-mediated analgesia in the land snail, Cepaea nemoralis. Behav. Neural. Biol. 50, 285–299.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kovacs-Balint, Zs., Csatho, A., Laszlo, J. F., Juhasz, P., Hernadi, I. (2011) Exposure to an inhomogeneous static magnetic field increases thermal pain threshold in healthy human volunteers. Bioelectromagnetics 32, 131–139.

    PubMed  Google Scholar 

  20. 20.

    Laszlo, J. F. (2011) External static magnetic field as a device for self-motion perception: A pathophysiological rodent model and its consequences. Horizons in Neuroscience Research. Volume 5 (Eds. A Costa, E Villalba) Nova Science Publishers, Hauppauge, NY, USA, pp. 106–124.

    Google Scholar 

  21. 21.

    Laszlo, J., Reiczigel, J., Szekely, L., Gasparics, A., Bogar, I., Bors, L., Racz, B., Gyires, K. (2007) Optimization of static magnetic field parameters improves analgesic effect in mice. Bioelectromagnetics 25, 615–627.

    Google Scholar 

  22. 22.

    Laszlo, J., Timar, J., Gyarmati, Zs., Fiirst, Zs., Gyires, K. (2009) Pain-inhibiting inhomogeneous static magnetic field fails to influence locomotor activity and anxiety behaviour in mice: no interference between magnetic field- and morphine-treatment. Brain Res. Bull. 79, 316–321.

    PubMed  Google Scholar 

  23. 23.

    Laszlo, J. F., Gyires, K. (2009) 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sciences 841—2, 12–17.

    CAS  PubMed  Google Scholar 

  24. 24.

    Miller-Perez, C., Sanzes-Islas, E., Pellicer, F., Rodriguez-Manzo, G., Cruz, S. L., Leon-Olea, M. (2008) Role of nociceptin/orphanin FQ and the pseudopeptide [Phe1 <P(CH2NH) Gly2]-nociceptin (1-13)-NH2 and their interaction with classic opioids in the modulation of thermonociception in the land snail Helix aspersa. E. J. Pharmacol. 581, 77–85.

    CAS  Google Scholar 

  25. 25.

    Nikolic, L., Kartelija, G., Nedeljkovic, M. (2008) Effect of static magnetic fields on bioelectric properties of the Br and Nl neurons of snail Helix pomatia. Comp. Biochem. Physiol. A 151, 657–663.

    Google Scholar 

  26. 26.

    Norekian, T. P., Sakharov, D. A. (1991) Mechanoreception in the pteropod mollusk Clione limachina: tactile inputs are blocked by opiate anatagonist. Sensory Systemy 5, 5–11.

    Google Scholar 

  27. 27.

    Pivovarov, A. S. (1993) Differently directed modulation of cholinoreceptor plasticity of RPa3 and LPa3 neurons by opiate mu and kappa agonists in the common snail. Zh. Vyssh. Nerv. Deyat. 43, 826–836.

    CAS  Google Scholar 

  28. 28.

    Prato, F. S., Kavaliers, M., Carson, J. L. (1996) Behavioural responses to magnetic fields by land snails are dependent on both magnetic field direction and light. Proc. Roy Soc. LB 263, 1437–1442.

    Google Scholar 

  29. 29.

    Prato, F. S., Kavaliers, M., Thomas, A. W. (2000) Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21, 287–301.

    CAS  PubMed  Google Scholar 

  30. 30.

    Rosen, A. D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. C 262, 1418–1422.

    Google Scholar 

  31. 31.

    Rosen, A. D. (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149–155.

    PubMed  Google Scholar 

  32. 32.

    Rosen, A. D. (2003) Effects of 125 mT magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24, 517–523.

    CAS  PubMed  Google Scholar 

  33. 33.

    Rosen, A. D. (2003) Mechanism of action of moderate intensity static magnetic fields on biological systems. Cell Biochem. Biophysics 39, 163–173.

    CAS  Google Scholar 

  34. 34.

    Rozsa, K. S., Solntseva, E. J. (1986) Modulation of cholinergic transmission by opiate peptide and FMRFamide on identified neurons of Helix pomatia L. (Gastropoda, Mollusca). Acta Physiol. Hung. 67, 429–133.

    CAS  PubMed  Google Scholar 

  35. 35.

    Saksida, L. M., Galea, L. A., Kavaliers, M. (1993) Antinociceptive effects of the enkephalinase inhibitor, SCH 34826, in the snail, Cepaea nemoralis. Peptides 14, 763–765.

    CAS  PubMed  Google Scholar 

  36. 36.

    Satow, Y., Matsunami, K, Kawashima, T., Satake, H., Huda, K. (2001) A strong constant magnetic fieldaffectsmuscletensiondevelopmentinthe bullfrog neuromuscular preparation. Bioelectromagnetics 22, 53–59.

    CAS  PubMed  Google Scholar 

  37. 37.

    Satow, Y., Satake, H., Matsunami, K. (1990) Effect of long exposure to large static magnetic field on the recovery process of bullfrog sciatic nerve activity. Proc. Jpn. Acad. 66, 151–155.

    Google Scholar 

  38. 38.

    Shellock, F. G., Crues, J. V. (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232, 635–652.

    PubMed  Google Scholar 

  39. 39.

    Sonetti, D., Mola, L., Casares, F., Bianchi, E., Guarna, M., Stefano, G. B. (1999) Endogenous morphine levels increase in molluscan neural and immune tissues after physical trauma. Brain Res. 835, 137–147.

    CAS  PubMed  Google Scholar 

  40. 40.

    Stefano, G. B., Salzet, M. (1999) Invertebrate opioid precursors: evolutionary conservation and the significance of enzymatic processing. Int. Rev. Cytol. 187, 261–286.

    CAS  PubMed  Google Scholar 

  41. 41.

    Stefano, G. B., Vadasz, I., Hiripi, L. (1980) Methionine enkephalin inhibits the bursting activity of the Br type neuron in Helix pomatia L. Experientia 15, 666–667.

    Google Scholar 

  42. 42.

    Thomas, A. W., Kavaliers, M., Prato, F. S., Ossenkopp, K. P. (1997) Pulsed magnetic field induced analgesia in the land snail Cepaea nemoralis, and the effect of u, S, and K opioid receptor agonist/ antagonist. Peptides 18, 703–709.

    CAS  Google Scholar 

  43. 43.

    Waldhoer, M, Bartlett, S. E., Whistler, J. L. (2004) Opioid receptors. Ann. Rev. Biochem. 73, 953–990.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. Zs. Fürst and Dr. M. Al-Khrasani for their kind contribution to the measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. F. László.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

László, J.F., Hernádi, L. Whole Body Static Magnetic Field Exposure Increases Thermal Nociceptive Threshold in the Snail, helix Pomatia. BIOLOGIA FUTURA 63, 441–452 (2012). https://doi.org/10.1556/ABiol.63.2012.4.3

Download citation

Keywords

  • Static magnetic field (SMF)
  • nociception
  • naloxone
  • analgesia
  • opioid receptors-snail