Acta Biologica Hungarica

, Volume 63, Issue 2, pp 189–201 | Cite as

Importance of Cytoplasmic Granularity of Human Oocytes in In Vitro Fertilization Treatments

  • P. FancsovitsEmail author
  • Zsuzsa G. Tóthné
  • Á. Murber
  • J. RigóJr.
  • J. Urbancsek


The aim of this study was to examine the effect of different stimulation protocols on oocyte granularity and to determine the influence of cytoplasmic granularity on further embryo development. A total of 2448 oocytes from 393 intracytoplasmic sperm injection (ICSI) cycles were analysed retrospectively. Oocytes were classified into 5 groups according to cytoplasmic granularity. (A) no granule or 1–2 small (<5 μm) granules; (B) more than 3 small granules; (C) large granules (>5 μm); (D) refractile body; (E) dense centrally located granular area. Correlation between characteristics of hormonal stimulation, oocyte granularity and embryo development was analysed. The occurrence of cytoplasmic granularity was influenced by the patient’s age and characteristics of stimulation. The type of granulation had no effect on fertilization rate and zygote morphology. However, some type of granulation resulted in a lower cleavage rate and more fragmented embryos. Our results provided additional information on how hormonal stimulation affects oocyte quality. While cytoplasmic granularity seems not to have an effect on fertilization and embryo development, the presence of refractile body in the oocyte is associated with reduced cleavage rates and impaired embryo development.


Cytoplasmic granularity hormonal stimulation in vitro fertilization oocyte quality refractile body 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alikani, M., Palermo, G., Adler, A., Bertoli, M., Blake, M., Cohen, J. (1995) Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote 3, 283–288.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology (2011) The Istanbul Consensus Workshop on Embryo Assessment: Proceedings of an Expert Meeting. Hum. Reprod. 26, 1270–1283.CrossRefGoogle Scholar
  3. 3.
    Balaban, B., Urman, B. (2006) Effect of oocyte morphology on embryo development and implantation. Reprod. BioMed. Online 12, 608–615.CrossRefGoogle Scholar
  4. 4.
    Balaban, B., Urman, B., Sertac, A., Alatas, C., Senai, A., Mercan, R. (1998) Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum. Reprod. 13, 3431–3433.CrossRefGoogle Scholar
  5. 5.
    Cumminis, J. M., Breen, T. M., Harrison, K. L., Shaw, J. M., Wilson, L. M., Hennessey, J. F. (1986) A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fertil. Embryo Transfer. 3, 284–295.CrossRefGoogle Scholar
  6. 6.
    De Shutter, P., Dozortsev, D., Qian, C., Dhont, M. (1996) Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmatic sperm injection. Hum. Reprod. 11, 595–597.CrossRefGoogle Scholar
  7. 7.
    Diedrich, K., Diedrich, C., Santos, E., Zoll, C., Al-Hasani, S., Reissmann, T., Krebs, D., Klingmüller, D. (1994) Suppression of the endogenous luteinizing hormone surge by the gonadotrophin-releasing hormone antagonist Cetrorelix during ovarian stimulation. Hum. Reprod. 5, 788–791.CrossRefGoogle Scholar
  8. 8.
    Ebner, T., Yaman, C., Moser, M., Sommergruber, M., Feicthinger, O., Tews, G. (2000) Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum. Reprod. 15, 427–430.CrossRefGoogle Scholar
  9. 9.
    Ebner, T., Moser, M., Sommergruber, M., Tews, G. (2003) Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum. Reprod. Update 9, 251–262.CrossRefGoogle Scholar
  10. 10.
    Ebner, T., Moser, M., Tews, G. (2006) Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod. BioMed. Online 12, 507–512.CrossRefGoogle Scholar
  11. 11.
    Ebner, T., Yaman, C., Moser, M., Sommergruber, M., Pölz, W., Tews, G. (2001) Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome. Fertil. Steril. 76, 281–285.CrossRefGoogle Scholar
  12. 12.
    Fancsovits, P., Tóthné, G. Zs., Murber, Á., Takács, F. Z., Papp, Z., Urbancsek, J. (2006) Correlation between first polar body morphology and further embryo development. Acta Biol. Hung. 57, 331–338.CrossRefGoogle Scholar
  13. 13.
    Fancsovits, P., Murber, Á., Tóthné, G. Zs., Rigó, J. Jr., Urbancsek, J. (2011) Human oocytes containing large cytoplasmic vacuoles can result in pregnancy and viable offspring. Reprod. Biomed. Online. 23, 513–516.CrossRefGoogle Scholar
  14. 14.
    Halliday, J. (1997) Outcomes of IVF conceptions: are they different? Best Pract. Res. Clin. Obstet. Gynaecol. 21, 67–81.CrossRefGoogle Scholar
  15. 15.
    Hill, G. A., Freeman, M., Bastias, M. C., Rogers, B. J., Herbert, C. M., Osteen, K. G., Wentz, A. C. (1989) The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil. Steril. 52, 801–806.CrossRefGoogle Scholar
  16. 16.
    Imthurn, B., Macas, E., Rosselli, M., Keller, P. J. (1996) Nuclear maturity and oocyte morphology after stimulation with highly purified follicle stimulation hormone compared to human menopausal gonadotrophin. Hum. Reprod. 11, 2387–2391.CrossRefGoogle Scholar
  17. 17.
    Kahraman, S., Yakin, K., Dönmez, E., Samli, H., Bahçe, M., Cengiz, G., Sertyel, S., Samly, M., Imirzalioğlu, N. (2000) Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum. Reprod. 15, 2390–2393.CrossRefGoogle Scholar
  18. 18.
    Loutradis, D., Drakakis, P., Kallianidis, K., Milingos, S., Dendrinos, S., Michalas, S. (1999) Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection Fertil. Steril. 72, 240–244.CrossRefGoogle Scholar
  19. 19.
    Mercan, R., Mayer, J. F., Walker, D., Jones, S., Oehringer, S., Toner, J. P., Muasher, S. J. (1997) Improved oocyte quality is obtained with follicle stimulating hormone alone than with follicle stimulating hormone/human menopausal gonadotrophin combination. Hum. Reprod. 12, 1886–1889.CrossRefGoogle Scholar
  20. 20.
    Meriano, J. S., Alexis, J., Visram-Zaver, S., Cruz, M., Casper, R. F. (2001) Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Hum. Reprod. 16, 2118–2123.CrossRefGoogle Scholar
  21. 21.
    Murber, Á., Fancsovits P., Ledó, N., Tóthné G. Zs., Rigó Jr., J., Urbancsek, J. (2009) Impact of GnRH analogues on oocyte/embryo quality and embryo development in in vitro fertilization/intracytoplasmic sperm injection cycles: a case control study. Reprod. Biol. Endocrin. 7, 103–110.CrossRefGoogle Scholar
  22. 22.
    Murber, Á., Fancsovits, P., Ledó, N. M., Szakács, M., Rigó Jr., J., Urbancsek, J. (2011) Impact of highly purified versus recombinant follicle stimulating hormone on oocyte quality and embryo development in intracytoplasmic sperm injection cycles Acta Biol. Hung. 62, 255–264.CrossRefGoogle Scholar
  23. 23.
    Ng, E. H. Y., Lau, E. Y. L., Yeung, W. S. B., Ho, P. C. (2001) HMG is as good as recombinant human FSH in terms of oocyte and embryo quality: a prospective randomized trial. Hum. Reprod. 16, 319–325.CrossRefGoogle Scholar
  24. 24.
    Niemitz, E. L., Feinberg, A. P. (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am. J. Hum. Genet. 74, 599–609.CrossRefGoogle Scholar
  25. 25.
    Olivennes, F., Fanchin, R., Bouchard, P., Taïeb, J., Selva, J., Frydman, R. (1995) Scheduled administration of a gonadotrophin-releasing hormone antagonist (Cetrorelix) on day 8 of in-vitro fertilization cycles: a pilot study. Hum. Reprod. 10, 1382–1386.PubMedGoogle Scholar
  26. 26.
    Otsuki, J., Nagai, Y., Chiba, K. (2007) Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J. Assist. Reprod. Genet. 24, 263–270.CrossRefGoogle Scholar
  27. 27.
    Plachot, M., Selva, J., Wolf, J. P., Bastit, P., de Mouzon, J. (2002) Conséquences d’une dysmorphie ovocytaire sur la fécondation et le développment embryonnaire après injection intracytoplamatique d’un spermatozoïde. Étude prospective, multicentrique. Gynéc. Obst. Fertil. 30, 772–779.CrossRefGoogle Scholar
  28. 28.
    Rienzi, L., Ubaldi, F. M., Iacobelli, M., Minasi, M. G., Romano, S., Ferrero, S., Sapienza, F., Baroni, E., Litwicka, K., Greco, E. (2008) Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil. Steril. 90, 1692–1700.CrossRefGoogle Scholar
  29. 29.
    Rienzi, L., Vajta, G., Ubaldi, F. (2011) Predictive value of oocyte morphology in human IVF: a systematic review of the literature Hum. Reprod. Update 17, 34–45.CrossRefGoogle Scholar
  30. 30.
    Salumets, A., Hydén-Granskog, C., Suikkari, A. M., Titinen, A., Tuuri, T. (2001) The predictive value of pronuclear morphology of zygotes in the assessment of human embryo quality. Hum. Reprod. 16, 2177–2181.CrossRefGoogle Scholar
  31. 31.
    Scott, L. A., Smith, S. (1998) The successful use of pronuclear embryo transfer the day following oocyte retrieval. Hum. Reprod. 13, 1003–1013.CrossRefGoogle Scholar
  32. 32.
    Serhal, P. F., Ranieri, D. M., Kinis, A., Marchant, S., Davies, M., Khadum, I. M. (1997) Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum. Reprod. 12, 1267–1270.CrossRefGoogle Scholar
  33. 33.
    Staessen, C., Camus, M., Bollen, N., Devroey, P., Van Steirteghem, A. C. (1992) The relationship between embryo quality and the occurrence of multiple pregnancies. Fertil. Steril. 57, 626–630.CrossRefGoogle Scholar
  34. 34.
    Steer, C. V., Millis, C. L., Tan, S. L., Campbesss, S., Edwards, R. G. (1992) The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum. Reprod. 7, 117–119.CrossRefGoogle Scholar
  35. 35.
    Tesarik, J., Greco, E. (1999) The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum. Reprod. 14, 1318–1323.CrossRefGoogle Scholar
  36. 36.
    Van Blerkom, J. (1990) Occurrence and developmental consequences of aberrant cellular organization in meiotically mature human oocytes after exogenous ovarian hyperstimulation. J. Electron Microsc. Tech. 16, 324–346.CrossRefGoogle Scholar
  37. 37.
    Van Blerkom, J., Henry, G. (1992) Oocyte dysmorphism and aneuploidy in morphologically mature human oocytes after ovarian stimulation. Hum. Reprod. 7, 379–390.CrossRefGoogle Scholar
  38. 38.
    Van Royen, E., Mangelschots, K., De Neubourg, D., Valkenburg, M., Van de Meerssche, M., Ryckaert, G., Eestermans, W., Gerris, J. (1999) Characterization of a top quality embryo, a step towards single embryo transfer. Hum. Reprod. 14, 2345–2349.CrossRefGoogle Scholar
  39. 39.
    Veeck, L. L. (1991) Atlas of the human oocyte and early conceptus. Vol II. Williams&Wilkins, Baltimore, pp. 1–255.Google Scholar
  40. 40.
    Xia, P. (1997) Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum. Reprod. 12, 1750–1755.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Fancsovits
    • 1
    Email author
  • Zsuzsa G. Tóthné
    • 1
  • Á. Murber
    • 1
  • J. RigóJr.
    • 1
  • J. Urbancsek
    • 1
  1. 1.Division of Assisted Reproduction, First Department of Obstetrics and GynaecologySemmelweis University School of MedicineBudapestHungary

Personalised recommendations