Advertisement

Acta Biologica Hungarica

, Volume 63, Issue 2, pp 167–179 | Cite as

Use of Human Amniotic Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Spermatogonial Stem Cells Via Epigenetic Regulation of the Nanog and Oct-4 Promoters

  • Te Liu
  • Yongyi Huang
  • Qin Huang
  • Lizhen Jiang
  • Lihe GuoEmail author
  • Zhixue Liu
Article

Abstract

Spermatogonial stem cells (SSCs) are defined by unique properties like other stem cells. However, there are two major challenges: long-term cultivation of normal SSCs into stable cell lines and maintaining the SSCs as undifferentiated and capable of self-renewal. Here, we compared different culture methods for mouse SSCs isolated and cultured from testicular tissue. We found that human amniotic epithelial cells (hAECs) can behave as feeder cells, allowing mouse SSCs to maintain a high level of alkaline phosphatase (AP) activity when cultured long-term. Also, we observed that expression of Nanog, Oct-4 and other important stem cells markers were higher in mouse SSCs cultured on hAECs compared to those cultured on MEF or without any feeder cells. Furthermore, we demonstrated that the CpG islands of the Nanog and Oct-4 promoters were hypomethylated in cells cultured on hAECs. In addition, mouse SSCs cultured on hAECs exhibited higher levels of H3AC and H3K4Me3 in the Nanog and Oct-4 promoters than those cultured on MEF or without feeder cells. Taken together, these results suggest that the hAECinduced epigenetic modifications at the Nanog and Oct-4 locus could be a key mechanism for maintaining mouse SSCs in an undifferentiated state capable of self-renewal.

Keywords

Human amnion epithelial cells mouse spermatogonial stem cells undifferentiated DNA methylation histone H3K4 trimethylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, G. B., Scadden, D. T. (2006) The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337.PubMedGoogle Scholar
  2. 2.
    Akle, C. A., Adinolfi, M., Welsh, K. I. (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2, 1003–1005.PubMedGoogle Scholar
  3. 3.
    Bibikova, M., Chudin, E., Wu, B. (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res. 16, 1075–1083.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boyer, L. A., Plath, K., Zeitlinger, J. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chambers, I., Colby, D., Robertson, M. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.PubMedGoogle Scholar
  6. 6.
    Chen, B., Wang, Y. B., Zhang, Z. L. (2009) Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J. Androl. 11, 557–565.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Conrad, S., Renninger, M., Hennenlotter, J. (2008) Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349.PubMedGoogle Scholar
  8. 8.
    Cowan, C. A., Atienza, J., Melton, D. A. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.PubMedGoogle Scholar
  9. 9.
    de Rooij, D. G. (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354.PubMedGoogle Scholar
  10. 10.
    Dym, M., Kokkinaki, M., He, Z. (2009) Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res. Embryo Today 87, 27–34.PubMedGoogle Scholar
  11. 11.
    Dym, M., He, Z., Jiang, J. (2009) Spermatogonial stem cells: unlimited potential. Reprod. Fertil. Dev. 21, 15–21.PubMedGoogle Scholar
  12. 12.
    Freberg, C. T., Dahl, J. A., Timoskainen, S. (2007) Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol. Biol. Cell 18, 1543–1553.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Giuili, G., Tomljenovic, A., Labrecque, N. (2002) Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep. 3, 753–759.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Guan, K., Nayernia, K., Maier, L. S. (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.PubMedGoogle Scholar
  15. 15.
    Hattori, N., Imao, Y., Nishino, K. (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12, 387–396.PubMedGoogle Scholar
  16. 16.
    Hermann, B. P., Sukhwani, M., Simorangkir, D. R. (2009) Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum. Reprod. 24, 1704–1716.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hofmann, M. C., Braydich-Stolle, L., Dym, M. (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev. Biol. 279, 114–124.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hong, Y., Liu, T., Zhao, H. (2004) Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA 101, 8011–8016.PubMedGoogle Scholar
  19. 19.
    Izadyar, F., Pau, F., Marh, J. (2008) Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135, 771–784.PubMedGoogle Scholar
  20. 20.
    Kanatsu-Shinohara, M., Inoue, K., Lee, J. (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012.PubMedGoogle Scholar
  21. 21.
    Kim, T. H., Barrera, L. O., Zheng, M. (2005) A high-resolution map of active promoters in the human genome. Nature 436, 876–880.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kimura, H., Tada, M., Nakatsuji, N. (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell Biol. 24, 5710–5720.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Koizumi, N. J., Inatomi, T. J., Sotozono, C. J. (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr. Eye Res. 20, 173–177.PubMedGoogle Scholar
  24. 24.
    Lachner, M., Jenuwein, T. (2002) The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.PubMedGoogle Scholar
  25. 25.
    Lai, D., Cheng, W., Liu, T. (2009) Use of Human Amnion Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Embryonic Stem Cells. Cloning Stem Cells 11, 331–340.PubMedGoogle Scholar
  26. 26.
    Lee, T. I., Jenner, R. G., Boyer, L. A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Loh, Y. H., Wu, Q., Chew, J. L. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.PubMedGoogle Scholar
  28. 28.
    Lucas, B., Fields, C., Hofmann, M. C. (2009) Signaling pathways in spermatogonial stem cells and their disruption by toxicants. Birth Defects Res. Embryo Today 87, 35–42.PubMedGoogle Scholar
  29. 29.
    Maki, C. B., Pacchiarotti, J., Ramos, T. (2009) Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum. Reprod. 24, 1480–1491.PubMedGoogle Scholar
  30. 30.
    Meng, X., Lindahl, M., Hyvonen, M. E. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.PubMedGoogle Scholar
  31. 31.
    Mitsui, K., Tokuzawa, Y., Itoh, H. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.PubMedGoogle Scholar
  32. 32.
    Miyabayashi, T., Teo, J. L., Yamamoto, M. (2007) Wnt/beta-catenin/CBP signaling maintains longterm murine embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. USA 104, 5668–5673.PubMedGoogle Scholar
  33. 33.
    Niwa, H., Miyazaki, J., Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.PubMedGoogle Scholar
  34. 34.
    Seandel, M., James, D., Shmelkov, S. V. (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346–350.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Shinohara, T., Brinster, R. L. (2000) Enrichment and transplantation of spermatogonial stem cells. Int. J. Androl. 23 Suppl 2, 89–91.PubMedGoogle Scholar
  36. 36.
    Shinohara, T., Avarbock, M. R., Brinster, R. L. (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96, 5504–5509.PubMedGoogle Scholar
  37. 37.
    Simonsson, S., Gurdon, J. (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell. Biol. 6, 984–990.PubMedGoogle Scholar
  38. 38.
    Tada, M., Tada, T., Lefebvre, L. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Takahashi, K., Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663–676.PubMedGoogle Scholar
  40. 40.
    Wu, Z., Falciatori, I., Molyneux, L. A. (2009) Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81, 77–86.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Xie, T., Spradling, A. C. (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Te Liu
    • 1
    • 2
  • Yongyi Huang
    • 4
  • Qin Huang
    • 3
  • Lizhen Jiang
    • 3
  • Lihe Guo
    • 3
    Email author
  • Zhixue Liu
    • 5
  1. 1.School of Environmental Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Shanghai Geriatric Institute of Chinese MedicineShanghaiChina
  3. 3.Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Laboratoire PROTEE, Bâtiment RUniversité du Sud Toulon-VarLA GARDE CedexFrance
  5. 5.School of Life Science and TechnologyTongji UniversityShanghaiChina

Personalised recommendations