Acta Biologica Hungarica

, Volume 63, Issue 1, pp 52–66 | Cite as

Ultrastructural Aspects and Programmed Cell Death in the Tapetal Cells of Lathyrus Undulatus Boiss

  • Filiz VardarEmail author
  • Meral Ünal


Programmed cell death (PCD) in the tapetum of Lathyrus undulatus L. was analyzed based on light, fluorescence and electron microscopy to characterize its spatial and temporal occurrence. Development and processes of PCD in secretory tapetal cells of Lathyrus undulatus L. were correlated with the sporog-enous cells and pollen grains. At early stages of development the tapetal cells appeared similar to pollen mother cells, structurally. Concurrent with meiosis, tapetum expanded both tangentially and radially as vacuoles increased in size. Tapetal cells most fully developed at young microspore stage. However, tapetum underwent substantial changes in cell organization including nucleus morphology monitored by DAPI. The TUNEL staining confirmed the occurrence of intra-nucleosomal DNA cleavage. In addition to nuclear degeneration which is the first hallmark of PCD other diagnostic features were observed at vacuolated microspore stage intensely; such as chromatin condensation at the periphery of the nucleus, nuclear membrane degeneration, chromatin release to the cytoplasm, vacuole collapse according to tono-plast rupture, shrinkage of the cytoplasm, the increase and enlargement of the endoplasmic reticulum cisternae and disruption of the plasma membrane. After vacuole collapse due to possible release of hydro-lytic enzymes the cell components degraded. Tapetal cells completely degenerated at bicellular pollen stage.


Lathyrus undulatus Boiss. programmed cell death tapetum TUNEL vacuole collapse 





Endoplasmic reticulum


nuclear deoxyribonucleic acid


Programmed Cell Death


Transmission electron microscopy


Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labelling


Vacuolar processing enzyme


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An, L. H., You, R. L. (2004) Studies on nuclear degeneration during programmed cell death of synergid and antipodal cells in Triticum aestivum. Sex. Plant Reprod. 17, 195–201.Google Scholar
  2. 2.
    del Campillo, E., Lewis, L. N. (1992) Occurrence of the 9.5 cellulase and other hydrolases in flower reproductive organs undergoing major cell wall disruption. Plant Physiol. 99, 1015–1020.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Clément, C., Laporte, P., Audran, J. C. (1998) The loculus content and tapetum during pollen development in Lilium. Sex. Plant Reprod. 11, 94–106.Google Scholar
  4. 4.
    Danon, A., Delorme, V., Mailhac, N., Gallois, P. (2000) Plant programmed cell death: a common way to die. Plant Physiol. Biochem. 38, 647–655.Google Scholar
  5. 5.
    Friedlander, R. M. (2003) Apoptosis and caspases in neurodegenerative diseases. NEJM 348, 1365–1375.PubMedGoogle Scholar
  6. 6.
    Fukuda, H. (1997) Tracheary element differentiation. Plant Cell 9, 1147–1156.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fukuda, H. (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 44, 245–253.PubMedGoogle Scholar
  8. 8.
    Greenberg, J. T. (1996) Programmed cell death: a way of life for plants. PNAS 93, 12094–12097.PubMedGoogle Scholar
  9. 9.
    Groover, A., de Witt, N., Heidel, A., Jones, A. (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196, 197–211.Google Scholar
  10. 10.
    Hatsugai, N., Kuroyanagi, M., Nishimura, M., Hara-Nishimura, I. (2006) A cellular suicide strategy of plants. Apoptosis 11, 905–911.PubMedGoogle Scholar
  11. 11.
    Jones, A. M. (2001) Programmed cell death in development and defence. Plant Physiol. 125, 94–97.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kerr, J. F. R., Wyllie, A. H., Currie, A. R. (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British J. Cancer 26, 239–257.Google Scholar
  13. 13.
    Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., Goldberg, R. B. (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2, 1201–1224.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lesniewska, J. (2003) Anther tapetum in programmed cell death. Kosmos 52, 399–412.Google Scholar
  15. 15.
    Lesniewska, J., Simeonova, E., Sikora, A., Mostowska, A., Charzyhska, M. (2000) Application of the comet assay in studies of programmed cell death (PCD) in plants. Acta Soc. Bot. Pol. 69, 101–107.Google Scholar
  16. 16.
    Li, Y. Q., Southworth, D., Linskens, H. F., Mulcahy, D. L., Cresti, M. (1995) Localization of ubiquitin in anthers and pistils of Nicotiana. Sex. Plant Reprod. 8, 123–128.Google Scholar
  17. 17.
    Li, D. H., Yang, X., Cui, K. M., Li, Z. L., Lee, C. L. (2003) Morphological changes in nucellar cells undergoing programmed cell death (PCD) during pollen chamber formation in Ginkgo biloba. Acta Bot. Sin. 45, 53–63.Google Scholar
  18. 18.
    Martin, D. S., Stolfi, R. L., Colofiore, J. R., Nord, L. D., Sternberg, S. (1994) Biochemical modulation of tumor cell energy in vivo: II. A lower dose of adriamycin is required and a greater antitumor activity is induced when cellular energy is depressed. Cancer Invest. 12, 296–307.PubMedGoogle Scholar
  19. 19.
    Misset, M. T., Gourret, J. P. (1984) Accumulation of smooth cisternae in the tapetal cells of Ulex europaeus L. (Papilionoideae). J. Cell Sci. 72, 65–74.PubMedGoogle Scholar
  20. 20.
    O’Brien, I. E. W., Baguley, B. C., Murray, B. G., Morris, B. A. M, Ferguson, I. B. (1998) Early stages of the apoptotic pathway in plant cells are reversible. Plant J. 13, 803–814.Google Scholar
  21. 21.
    Papini, A., Mosti, S., Brighigna, L. (1999) Programmed cell death events during tapetum development of angiosperms. Protoplasma 207, 213–221.Google Scholar
  22. 22.
    Parish, R. W., Li, S. F. (2010) Death of a tapetum: A programme of developmental altruism. Plant Sci. 178, 73–89.Google Scholar
  23. 23.
    Pennel, R. I., Lamb, C. (1997) Programmed cell death in plants. Plant Cell 9, 1157–1168.Google Scholar
  24. 24.
    Polowick, P., Sawhney, V. K. (1993) Differentiation of the tapetum during microsporogenesis in tomato (Lycopersicon esculentum Mill.), with special reference to the tapetal cell wall. Ann. Bot. 72, 595–605.Google Scholar
  25. 25.
    Schreiber, D. N., Bantin, J., Dresselhaus, T. (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 134, 1069–1079.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Schussler, E. E., Longstreth, D. J. (2000) Changes in cell structure during the formation of root aer-enchyma in Sagittaria lancifolia (Alismataceae). Am. J. Bot. 87, 12–19.PubMedGoogle Scholar
  27. 27.
    Schweizer, D. (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58, 307–324.PubMedGoogle Scholar
  28. 28.
    Senatore, A., Trobacher, C. P., Greenwood, J. S. (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol. 149, 775–790.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Shi, Y., Zhao, S., Yao, J. (2009) Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice. J. Integ. Plant Biol. 51, 774–781.Google Scholar
  30. 30.
    Steer, M. W. (1977) Differentiation of the tapetum in Avena II. The endoplasmic reticulum and Golgi apparatus. J. Cell Sci. 28, 71–86.PubMedGoogle Scholar
  31. 31.
    Teng, C., Dong, H., Shi, L., Deng, Y., Mu, J., Zhang, J., Yang, X., Zuo, J. (2008) Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol. 146, 1322–1332.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Thomas, H., Ougham, H. J., Wagstaff C., Stead, A. D. (2003) Defining senescence and death. J. Exp. Bot. 54, 1127–1132.PubMedGoogle Scholar
  33. 33.
    Vardar, F., Ünal, M. (2011) Anther development and cytochemistry in Lathyrus undulatus Boiss. (Fabaceae). Acta Bot. Croat. 70, 53–64.Google Scholar
  34. 34.
    Varnier, A. L., Mazeyrat-Gourbeyre, F., Sangwan, R. S., Clément, C. (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J. Struct. Biol. 152, 118–128.PubMedGoogle Scholar
  35. 35.
    Vila, M., Przedborski, S. (2003) Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 2365–2375.Google Scholar
  36. 36.
    Vizcay-Barrena, G., Wilson, Z. A. (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J. Exp. Bot. 57, 2709–2717.PubMedGoogle Scholar
  37. 37.
    Wang, M., Hoekstra, S., van Bergen, S., Lamers, G. E. M., Oppedijk, B. J., van der Heijden, M. W., de Priester, W., Schilperoort, R. A. (1999) Apoptosis in developing anthers and the role of ABAin this process during androgenesis in Hordeum vulgare L. Plant Mol. Biol. 39, 489–501.PubMedGoogle Scholar
  38. 38.
    Wei, C. X., Lan, S. Y., Xu, Z. X. (2002) Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice. Acta Bot. Sin. 44, 1396–1402.Google Scholar
  39. 39.
    Wu, H., Yang, M. (2005) Reduction in vacuolar volume in the tapetal cells coincides with conclusion of the tetrad stage in Arabidopsis thaliana. Sex. Plant Reprod. 8, 173–178.Google Scholar
  40. 40.
    Wu, H. M., Cheung, A. Y. (2000) Programmed cell death in plant reproduction. Development 44, 267–281.Google Scholar
  41. 41.
    Xu, F. X., Chye, M. L. (1999) Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J. 17, 321–327.PubMedGoogle Scholar
  42. 42.
    Zhang, S., Liang, W. Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y. M., Yu, W. J., Zhang, D. B. (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol. Plant. 1, 599–610.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Science and Art Faculty, Department of BiologyMarmara UniversityGöztepe, İstanbulTurkey

Personalised recommendations