Acta Biologica Hungarica

, Volume 63, Issue 1, pp 26–37 | Cite as

3.6-KB Mouse Cyclin C Promoter Fragment is Predominantly Active in the Testis

  • P. BlazsóEmail author
  • Ildikó Sinkó
  • Tünde Praznovszky
  • G. Hadlaczky
  • R. L. Katona


Cyclin C is a highly conserved protein that regulates cell-cycle, messenger RNA transcription and cell adhesion. Recently published studies demonstrate that this protein is an essential player during early embryonic development of multicellular eukaryotes as well. In order to understand better its complex function at the level of tissues or organs, spatial expression characteristics of cyclin C and regulatory components of its expression are needed to be determined. In vitro studies on human cells suggested that approximately the first 3 kilobases of the cyclin C promoter might contain all the regulatory elements that might mimic transcription of cyclin C. To test the hypothesis, we generated reporter transgenic lines where the first 3.6-kilobase region of mouse cyclin C promoter fragment drives the transcription of a marker gene. Messenger RNA levels of the marker gene and cyclin C isoforms were measured in nine organs with reverse transcription coupled quantitative realtime polymerase chain reaction and their expression patterns were compared. The marker gene is predominantly transcribed in testes and does not follow the transcriptional regulation of the examined cyclin C isoforms. Thus, the isolated promoter fragment alone is not sufficient for the complete physiological modulation of cyclin C RNA levels, however, it is capable of enhancing testicular transcription which can be exploited in future applications.


Cyclin C promoter fragment hrGFP gene expression testis predominance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akoulitchev, S., Chuikov, S., Reinberg, D. (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106.CrossRefGoogle Scholar
  2. 2.
    Barette, C., Jariel-Encontre, I., Piechaczyk, M., Piette, J. (2001) Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 20, 551–562.CrossRefGoogle Scholar
  3. 3.
    Bustin, S.A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.CrossRefGoogle Scholar
  4. 4.
    Donner, A. J., Ebmeier, C. C., Taatjes, D. J., Espinosa, J. M. (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17, 194–201.CrossRefGoogle Scholar
  5. 5.
    Elmlund, H., Baraznenok, V., Lindahl, M., Samuelsen, C. O., Koeck, P. J. B., Holmberg, S., Hebert, H., Gustafsson, C. M. (2006) The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 103, 15788–15793.CrossRefGoogle Scholar
  6. 6.
    Fryer, C. J., White, J. B., Jones, K. A. (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell. 16, 509–520.CrossRefGoogle Scholar
  7. 7.
    Greene, D. M., Hsu, D.-W., Pears, C. J. (2010) Control of cyclin C levels during development of Dictyostelium. PLoS ONE. 5, el0543.Google Scholar
  8. 8.
    Katona, R., Lahti, J. M. (2006) Cyclin C. UCSD-Nature Molecule Pages. Scholar
  9. 9.
    Katona, R. L., Loyer, P., Roby, S. K., Lahti, J. M. (2007) Two isoforms of the human cyclin C gene are expressed differentially suggesting that they may have distinct functions. Acta Biol. Hung. 58, 133–137.CrossRefGoogle Scholar
  10. 10.
    Knuesel, M. T., Meyer, K. D., Bernecky, C., Taatjes, D. J. (2009) The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451.CrossRefGoogle Scholar
  11. 11.
    Knuesel, M. T., Meyer, K. D., Donner, A. J., Espinosa, J. M., Taatjes, D. J. (2009) The human CDK8 subcomplex is a histone kinase that requires Medl2 for activity and can function independently of mediator. Mol. Cell. Biol. 29, 650–661.CrossRefGoogle Scholar
  12. 12.
    Lefever, S., Vandesompele, J., Speleman, F., Pattyn, F. (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res. 37, D942–945.CrossRefGoogle Scholar
  13. 13.
    Léopold, P., O’Farrell, P. H. (1991) An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in Gl cyclins. Cell 66, 1207–1216.CrossRefGoogle Scholar
  14. 14.
    Liu, Z. J., Tanaka, Y., Mine, S., Morinobu, A., Yagita, H., Okumura, K., Taniguchi, T., Yamamura, H., Minami, Y. (1998) Functional cooperation of cyclin C and c-Myc in mediating homotypic cell adhesion via very late antigen-4 activation and vascular cell adhesion molecule-1 induction. Blood. 92, 4700–4711.CrossRefGoogle Scholar
  15. 15.
    Loncle, N., Boube, M., Joulia, L., Boschiero, C., Werner, M., Cribbs, D. L., Bourbon, H.-M. (2007) Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J. 26, 1045–1054.CrossRefGoogle Scholar
  16. 16.
    Makkonen, K. M., Malinen, M., Ropponen, A., Väisänen, S., Carlberg, C. (2009) Cell cycle regulatory effects of retinoic acid and forskolin are mediated by the cyclin C gene. J. Mol. Biol. 393, 261–271.CrossRefGoogle Scholar
  17. 17.
    Masek, T., Vopalensky, V., Suchomelova, P., Pospisek, M. (2005) Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 336, 46–50.CrossRefGoogle Scholar
  18. 18.
    Nagy, A., Gertsenstein, M., Vintersten, K., Behringer, R. (2002) Manipulating the Mouse Embryo: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory Press.Google Scholar
  19. 19.
    Oh, C., Choi, Y. J., Kim, H. G., Lee, D.-H. (2006) Osmosensitive gene expression of taurine transporter and cyclin C in embryonic fibroblast cells. Adv. Exp. Med Biol. 583, 49–57.CrossRefGoogle Scholar
  20. 20.
    Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45–e45.CrossRefGoogle Scholar
  21. 21.
    Polly, P., Danielsson, C., Schräder, M., Carlberg, C. (2000) Cyclin C is a primary lalpha,25-dihydroxyvitamin D(3) responding gene. J. Cell. Biochem. 77, 75–81.CrossRefGoogle Scholar
  22. 22.
    Radonic, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., Nitsche, A. (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313, 856–862.CrossRefGoogle Scholar
  23. 23.
    Rao, H. V., Thirumangalakudi, L., Grammas, P. (2009) Cyclin C and cyclin dependent kinases 1, 2 and 3 in thrombin-induced neuronal cell cycle progression and apoptosis. Neurosci. Lett. 450, 347–350.CrossRefGoogle Scholar
  24. 24.
    Ren, S., Rollins, B. J. (2004) Cyclin C/cdk3 promotes Rb-dependent GO exit. Cell 117, 239–251.CrossRefGoogle Scholar
  25. 25.
    Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., Lees, E. (1996) Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12, 2631–2640.PubMedGoogle Scholar
  26. 26.
    Sage, J. (2004) Cyclin C makes an entry into the cell cycle. Dev. Cell. 6, 607–608.CrossRefGoogle Scholar
  27. 27.
    Saxena, U. H., Powell, C. M. H., Fecko, J. K., Cacioppo, R., Chou, H. S., Cooper, G. M., Hansen, U. (2009) Phosphorylation by cyclin C/cyclin-dependent kinase 2 following mitogenic stimulation of murine fibroblasts inhibits transcriptional activity of LSF during G1 progression. Mol. Cell. Biol. 29, 2335–2345.CrossRefGoogle Scholar
  28. 28.
    Sinkkonen, L., Malinen, M., Saavalainen, K., Väisänen, S., Carlberg, C. (2005) Regulation of the human cyclin C gene via multiple vitamin D3-responsive regions in its promoter. Nucleic Acids Res. 55, 2440–2451.CrossRefGoogle Scholar
  29. 29.
    Tassan, J. P., Jaquenoud, M., Léopold, P., Schultz, S. J., Nigg, E. A. (1995) Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. U.S.A. 92, 8871–8875.CrossRefGoogle Scholar
  30. 30.
    Westerling, T., Kuuluvainen, E., Mäkelä, T. P. (2007) Cdk8 is essential for preimplantation mouse development. Mol. Cell. Biol. 27, 6177–6182.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Blazsó
    • 1
    Email author
  • Ildikó Sinkó
    • 1
  • Tünde Praznovszky
    • 1
  • G. Hadlaczky
    • 1
  • R. L. Katona
    • 1
  1. 1.Institute of Genetics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations