Acta Biologica Hungarica

, Volume 63, Issue 1, pp 15–25 | Cite as

Expression Analysis of Heat Shock Genes in the Skin, Spleen and Blood of Common Carp (Cyprinus Carpio) after Cadmium Exposure and Hypothermia

  • Ágnes Ferencz
  • Renáta Juhász
  • Monica Butnariu
  • Aranka K. Deér
  • Ilona S. Varga
  • J. NemcsókEmail author


Heat shock proteins are chaperones that play a pivotal role in controling multiple regulatory pathways such as stress defense, hormone signaling, cell cycle control, cell proliferation and differentiation, and apoptosis. In this study, the expression patterns of four well-known heat shock genes (hsp70, hsc70-1, hsc70-2 and hsp90α) were characterized in the skin, spleen and blood cells of the common carp, under unstressed conditions and after Cd2+ treatment or hypothermia. The examined genes were expressed in a tissue-specific manner: hsc70-2 was expressed constitutively, and was at best only slightly inducible; hsp90α exhibited a high basic expression in all three tissues, whereas hsc70-1 did so only in the blood cells, the expression of hsp70 proved to be below the level of detection in unstressed fish. Cold shock induced the expression of hsp genes in the spleen (hsp90α) and blood cells (hsp70, hsc70-1 and hsp90α), while Cd2+ treatment has no effect on the expression pattern. The highest inducibilities were detected in the skin: for hsp70 an induction of at least 20-fold after cadmium exposure, for hsc70-1 of at least 30-fold and for hsp90α of 3-fold after hypothermia.


Cadmium treatment carp heat shock genes RT-PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, K. S., Dorgai, L., Abraham, M., Hermesz, E. (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem. Biophys. Res. Com. 307, 503–509.PubMedGoogle Scholar
  2. 2.
    Ali, K. S., Dorgai, L., Gazdag, A., Abraham, M., Hermesz, E. (2003) Identification and induction of hsp70 gene by heat shock and cadmium exposure in carp. Acta Biol. Hung. 54, 323–334.PubMedGoogle Scholar
  3. 3.
    Basu, N., Todgham, A. E., Ackerman, R A., Bibeau, M. R., Nakano, K., Schulte, P. M., Iwama, G. K. (2002) Heat shock protein genes and their functional significance in fish. Gene 295, 173–183.PubMedGoogle Scholar
  4. 4.
    Caipang, C. M., Lazado, C. C., Brinchmann, M. F., Rombout, J. H., Kiron, V. (2011) Differential expression of immune and stress genes in the skin of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. Part D Genomics. Proteomics. [Epub ahead of print]Google Scholar
  5. 5.
    Csermely, P., Schnaider, T., Soti, C., Prohaszka Z., Nardai, G. (1998) The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168.PubMedGoogle Scholar
  6. 6.
    Currie, S., Tufts, B. L. (1996) Synthesis of stress protein 70 (Hsp70) in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol. 200, 607–614.Google Scholar
  7. 7.
    Duffy, L. K., Scofield, E., Rodgers, T., Patton M., Bowyer, R. T. (1999) Comparative baseline levels of mercury, hsp70 and hsp60 in subsistence fish from the Yukon-Kuskokwim delta region of Alaska. Comp. Biochem. Physiol. Toxicol. Pharmacol. 124, 181–186.Google Scholar
  8. 8.
    Ellett, F., Lieschke, G. J. (2010) Zebrafish as a model for vertebrate hematopoiesis. Curr Opin. Pharmacol. 10, 563–570.PubMedGoogle Scholar
  9. 9.
    Fänge, R., Nilsson, S. (1985) The fish spleen: structure and function. Experientia 41, 152–158.PubMedGoogle Scholar
  10. 10.
    Feder, M. E., Hofmann, G. E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.PubMedGoogle Scholar
  11. 11.
    Fink, A. L., Goto, Y. (1998) Molecular Chaperones in the Life Cycle of Proteins: Structure, Function, and Mode of Action. Marcel Dekker, New York.Google Scholar
  12. 12.
    Fulladosa, E., Deane, E., Ng, A. H., Woo, N. Y., Murat, J. C., Villaescusa, I. (2006) Stress proteins induced by exposure to sublethal levels of heavy metals in sea bream (Sparus sarba) blood cells. Toxicol. In Vitro 20, 96–100.PubMedGoogle Scholar
  13. 13.
    Geist, J., Werner, I., Eder, K. J., Leutenegger, C. M. (2007) Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat. Toxicol. 85, 28–39.PubMedGoogle Scholar
  14. 14.
    Hao, H., Naomoto, Y., Bao, X., Watanabe, N., Sakurama, K., Noma, K., Motoki, T., Tomono, Y., Fukazawa, T., Shirakawa, Y., Yamatsuji, T., Matsuoka, J., Takaoka, M. (2010) HSP90 and its inhibitors. Oncol. Rep. 23, 1483–1492.PubMedGoogle Scholar
  15. 15.
    Haiti, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–580.Google Scholar
  16. 16.
    Hassanein, H. M. A., Banhawy, M. A., Soliman, F. M., Abdel-Rehim, S. A., Muller, W. E. G., Schroder, H. C. (1999) Induction of Hsp70 by the herbicide oxyfluoren (goal) in the Egyptian Nile fish, Oreochromis niloticus. Arch. Environ. Contain. Toxicol. 37, 78–84.Google Scholar
  17. 17.
    Hendrick, J. P., Haiti, F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349–384.PubMedGoogle Scholar
  18. 18.
    Hermesz, E., Ábrahám, M., Nemcsók, J. (2001) Identification of two hsp90 genes in carp. Comp. Biochem. Physiol. Part C. 129, 397–407.Google Scholar
  19. 19.
    Iwama, G. K., Thomas, P. T., Forsyth, R. B., Vrjayan, M. M. (1998) Heat shock protein expression in fish. Review, in Fish Biol. Fish 8, 35–56.Google Scholar
  20. 20.
    Jonak, C., Klosner, G., Trauringer, F. (2006) Heat shock proteins in the skin. Int. J. Cosm. Sci. 28, 233–241.Google Scholar
  21. 21.
    Kiang, J. G., Tsokos, G. C. (1998) Heat shock proteins 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183–201.PubMedGoogle Scholar
  22. 22.
    Krone, P. H., Sass, J. B. (1994) Hsp90a and hsp90ß genes are present in the zebrafish and are differentially regulated in developing embryos. Biochem. Biophys. Res. Commun. 204, 746–752.PubMedGoogle Scholar
  23. 23.
    Lertkiatmongkol, P., Pethuan, S., Jirakanjanakit, N., Rongnoparut, P. (2010) Transcription analysis of differentially expressed genes in insecticide-resistant Aedes aegypti mosquitoes after deltamethrin exposure. J. Vector. Ecol. 35, 197–203.Google Scholar
  24. 24.
    Lund, S. G., Phillips, M. C., Moyes, C. D., Tufts, B. L. (2000) The effects of cell ageing on protein synthesis in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol. 203, 2219–2228.PubMedGoogle Scholar
  25. 25.
    Manchado, M., Salas-Leiton, E., Infante, C., Ponce, M., Asensio, E., Crespo, A., Zuasti, E., Canavate, J. P. (2008) Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 416, 77–84.PubMedGoogle Scholar
  26. 26.
    Mladineo, I., Block, B. A. (2010) Expression of cytokines IL-1beta and TNF-alpha in tissues and cysts surrounding Didymocystis wedli (Digenea, Didymozoidae) in the Pacific bluefin tuna (Thunnus orientalis). Fish Shellfish Immunol. 29, 487–493.PubMedGoogle Scholar
  27. 27.
    Morimoto, R. I., Santoro, M. G. (1998) Stress-inducible responses and heat shock proteins: New pharmacological targets for cytoprotection. Nat. Biotechnol. 16, 833–838.PubMedGoogle Scholar
  28. 28.
    Morimoto, R. I., Tissieres, A., Georgopoulos, C. (1990) Stress Proteins in Biology and Medicine. Cold Spring Harbor Press, New York.Google Scholar
  29. 29.
    Mukhopadhyay, I., Nazir, A., Saxena, D. K., Chowdhuri, D. K. (2002) Toxicity of Cypermethrin: hsp70 as a biomarker of response in transgenic Drosophila. Biomarkers 7, 501–510.PubMedGoogle Scholar
  30. 30.
    Oruc, E. U., Usta, D. (2007) Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol. 23, 48–55.PubMedGoogle Scholar
  31. 31.
    Padmini, E. (2010) Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. Rev. Environ. Contam. Toxicol. 206, 1–27.PubMedGoogle Scholar
  32. 32.
    Park, J. H, Lee, J. J., Yoon, S., Lee, J. S., Choe, S. Y, Choe, J., Park, E. H., Kim, C. G. (2001) Genomic cloning of the Hsc71 gene in the hermaphroditic teleost Rivulus marmoratus and analysis of its expression in skeletal muscle: Identification of a novel muscle-preferred regulatory element. Nucleic Acids Res. 29, 3041–3050.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Pearl, L. H., Prodromou, C. (2000) Structure and in vivo function of hsp90. Curr. Opin. Struct. Biol. 10, 46–51.PubMedGoogle Scholar
  34. 34.
    Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Maderson, P., Sell, A. F, Kruse, C., Paus, R. (2010) ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Exp. Dermatol. 19, 313–324.PubMedGoogle Scholar
  35. 35.
    Roberts, R. J., Agius, C., Saliba, C., Bossier, P., Sung, Y. Y. (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J. Fish. Dis. 33, 789–801.PubMedGoogle Scholar
  36. 36.
    Sanders, B. M., Nguyen, J., Martin, L. S., Howe, S. R., Coventry, S. (1995) Induction and subcellular localization of two major stress proteins in response to copper in the fathead minnow Pimephales promelas. Comp. Biochem. Physiol. C Pharmacol. Toxicol. 112, 335–343.Google Scholar
  37. 37.
    Santacruz, H., Vriz, S., Angelier, N. (1997) Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet. 21, 223–233.PubMedGoogle Scholar
  38. 38.
    Vijayan, M. M., Pereira, C., Kruzynski, G., Iwama, G. K. (1998) Sublethal concentrations of contaminant induce the expression of hepatic heat-shock protein 70 in 2 salmonids. Aquat. Toxicol. 40, 101–108.Google Scholar
  39. 39.
    Welch, W. J. (1993) How cells respond to stress. Sci. Am. 269, 56–64.Google Scholar
  40. 40.
    Williams, J. H., Farag, A. M., Stansbury, M. A., Young, P. A., Bergman, H. L., Petersen, N. S. (1996) Accumulation of hsp70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and/or diet. Environ. Toxicol. Chem. 15, 1324–1328.Google Scholar
  41. 41.
    Young, J. C. (2010) Mechanisms of the Hsp70 chaperone system. Biochem. Cell. Biol. 88, 291–300.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Young, J. C., Moarefi, I., Hartl, F. U. (2001) Hsp90: A specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zafarullah, M., Wisniewski, J., Shworak, N. W., Schieman, S., Misra, S., Gedamu, L. (1992) Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from rainbow trout. Eur. J. Biochem. 204, 893–900.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ágnes Ferencz
    • 1
  • Renáta Juhász
    • 1
  • Monica Butnariu
    • 2
  • Aranka K. Deér
    • 1
  • Ilona S. Varga
    • 1
  • J. Nemcsók
    • 1
    • 3
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of Exact SciencesBanatâs University of Agricultural Sciences and Veterinary Medicine from TimisoaraTimisoaraRomania
  3. 3.Department of BiologyJ. Selye UniversityKomarnoSlovakia

Personalised recommendations