Acta Biologica Hungarica

, Volume 63, Issue 1, pp 138–150 | Cite as

Purification and Characterization of a Thermostable α-Galactosidase from Thielavia Terrestris NRRL 8126 in Solid State Fermentation

  • Rawia R. Saad
  • Eman M. FawziEmail author


Several seeds and husks of some plants belonging to leguminosae, Graminae, Compositae and Palmae were evaluated as carbon substrates to produce α-galactosidase (α-Gal) by the thermophilic fungus, Thielavia terrestris NRRL 8126 in solid substrate fermentation. The results showed that Cicer arietinum (chick pea seed) was the best substrate for a-Gal production. The crude enzyme was precipitated by ammonium sulphate (60%) and purified by gel filtration on sephadex G-100 followed by ion exchange chromatography on DEAE-Cellulose. The final purification fold of the enzyme was 30.42. The temperature and pH optima of purified a-Gal from Thielavia terrestris were 70 °C and 6.5, respectively. The enzyme showed high thermal stability at 70 °C and 75 °C and the half-life of the a-Gal at 90 °C was 45 min. Km of the purified enzyme was 1.31 mM. The purified enzyme was inhibited by Ag2+, Hg2+, Zn2+, Ba2+, Mg2+, Mn2+ and Fe2+ at 5 mM and 10 mM. Also, EDTA, sodium arsenate, L-cysteine and iodoacetate inhibited the enzyme activity. On the other hand, Ca2+, Cu2+, K+ and Na+ slightly enhanced the enzyme activity at 5 mM while at 10 mM they caused inhibition. The molecular weight of the a-Gal was estimated to be 82 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme displays a number of biochemical properties that make it a potentially strong candidate for biotechnological and medicinal applications.


Hemicelluloses α-galactosidase thermostability Thielavia terrestris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ademark, P., Larsson, M., Tjerneld, F., Stalbrand, H. (2001) Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb. Technol. 29, 441–448.CrossRefGoogle Scholar
  2. 2.
    Akaogi, M., Ohmura, N., Suzuki, T., Kotwal, S. M., Gote, M. M., Sainkar, S. R., Khan, M. I., Khire, J. M. (1988) Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis. Process Biochem. 33, 337–343.Google Scholar
  3. 3.
    Aleksieva, P., Tchorbanov, B., Nacheva, L. (2010) High yield production of a-galactosidase extracted from Penicillium chrysogenum and Aspergillus niger. Biotechnol. & Biotechnol. Eq. 24, 1620–1623.CrossRefGoogle Scholar
  4. 4.
    Anisha, G. S., John, R. P., Prema, P., Pandey, A. (2010) Investigation on a-galactosidase production by Streptomyces griseoloalbus in a forcefully aerated packed-bed bioreactor operating in solid-state fermentation condition. Appl. Biochem. Biotechnol. 160, 421–427.CrossRefGoogle Scholar
  5. 5.
    Asano, N., Ishii, S., Kizu, H., Ikeda, K., Yasuda, K., Kato, A., Martin, O. R., Fan, J. Q. (2000) In vitro inhibition and intracellular enhancement of lysosomal a-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur. J. Biochem. 267, 4179–4186.CrossRefGoogle Scholar
  6. 6.
    Awan, M. S., Jalal, F., Ayub, N., Akhtar, M., W., Rajoka, M. I. (2009) Production and characterization of a-galactosidase by a multiple mutant of Aspergillus niger in solid-state fermentation. Food Technol. Biotechnol. 47, 370–380.Google Scholar
  7. 7.
    Bradford, M. A. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254.CrossRefGoogle Scholar
  8. 8.
    Bulpin, P. V., Gidley, M. J., Jeffcoat, R., Underwood, D. R. (1990) Development of a biotechnological process for the modification of galactomannan polymers with plant a-galactosidase. Carbohydr. Polym. 12, 155–168.CrossRefGoogle Scholar
  9. 9.
    Dey, P. M., Patel, S., Brownleader, M. D. (1993) Induction of a-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnol. Appl. Biochem. 17, 361–371.PubMedGoogle Scholar
  10. 10.
    El-Gindy, A. A. (2002) Production, purification and some properties of a-galactosidase from Aspergillus niger. Aft. J. Mycol. Biotechnol. 10, 1–9.Google Scholar
  11. 11.
    El-Gindy, A. A., Ali, U. F., Ibrahim, Z. M., Isaac, G. S. (2008) A cost-effective medium for enhanced production of extracellular a-galactosidase in solid substrate cultures of Aspergillus awamori and A. carbonarius. Aust. J. Basic Appl. Sci. 2, 880–899.Google Scholar
  12. 12.
    Gaillard, B. D. E. (1965) Comparison of the hemicelluloses from plants belonging to two different plant families. Phytochem. 4, 631–634.CrossRefGoogle Scholar
  13. 13.
    Glantz, A. S. (1992) Primer of biostatistics. McGraw Hill, Inc., USA.Google Scholar
  14. 14.
    Holker, F., Hofer, M., Lenz, J. (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64, 175–186.CrossRefGoogle Scholar
  15. 15.
    Jermyn, M. A. (1955) Cellulose and hemicellulose. In: Peach, K., Tracey, M. V. (eds), Modern Methods of Plant Analysis. 2, 197–224.Google Scholar
  16. 16.
    Kotwal, S. M., Khan, M. I., Khire, J. M. (1995) Production of thermostable a-galactosidase from thermophilic fungus Humicola sp. J. ind. Microbiol. 15, 116–120.CrossRefGoogle Scholar
  17. 17.
    Kotwal, S. M., Gote, M. M., Sainker, S. R., Khan, M. I., Khire, J. M. (1998) Production of a-galactosidase from the thermophilic fungus Humicola sp. in solid state fermentation and its application in soymilk hydrolysis. Process Biochem. 33, 337–343.CrossRefGoogle Scholar
  18. 18.
    Kotwal, S. M., Gote, M. M., Khan, M. I., Khire, J. M. (1999) Production, purification and characterization of a constitutive intracellular a-galactosidase from the thermophilic fungus Humicola sp. J. Ind. Microbial. Biotechnol. 23, 661–667.CrossRefGoogle Scholar
  19. 19.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  20. 20.
    Lineweaver, H., Burk, D. (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666.CrossRefGoogle Scholar
  21. 21.
    Liu, C. Q., Chen, Q. H., Tang, B., Ruan, H., He, G. Q. (2007) Response surface methodology for optimizing the fermentation medium of a-galactosidase in solid-state fermentation. Lett. Appl. Microbiol. 45, 206–212.CrossRefGoogle Scholar
  22. 22.
    Malanchuk, V. M., Buglova, T. T., Varbanets, L. D. (2001) Study of functional groups in the active center of a-galactosidase of Penicillium sp. 23. Mikrobiolohichnyi zhurnal (Kiev, Ukraine. (1993) 63, 9–18.PubMedGoogle Scholar
  23. 23.
    Manzanares, P., de Graaff H. L., Visser, J. (1998) Characterization of galactosidases from Aspergillus niger: purification of a novel a-galactosidase activity. Enzyme Microb. Technol. 22, 383–390.CrossRefGoogle Scholar
  24. 24.
    Mulimani, V., Ramalingam, H. (1995) Enzymatic hydrolysis of raffinose, stachyose in soybean milk by a-galactosidase from Gibberella fujikuroi. Biochem. Molecular Biol. International 36, 897–905.Google Scholar
  25. 25.
    Ozsoy, N., Berkkan, H. (2003) Production and characterization of a-galactosidase from Aspergillus flavipes. Cell Biochem. Fund. 21, 387–389.CrossRefGoogle Scholar
  26. 26.
    Palmer, T. (1991) Extraction and Purification of Enzymes. In: Palmer, T. (ed.) Understanding Enzymes, Ellis Horwood. Ltd., London, pp. 301–317.Google Scholar
  27. 27.
    Pessela, B. C. C., Fernandez-Lafuente, R., Torres, R., Mateo, C., Fuentes, M., Filho, M., Vian, A., Garcia, J. L., Guisan, J. M., Carrascosa, A. V. (2007) Production of a thermoresistant α-galactosidase from Thermus sp. strain T2 for food processing. Food Biotechnol. 21, 91–103.CrossRefGoogle Scholar
  28. 28.
    Peterson, E. A., Sober, H. A. (1962) Column chromatography of protein: Substituted cellulases. In: S. Colowich, N. Kapllan (eds) Methods in Enzymology. Vol. 5, Academic Press, New York, pp. 3–27.CrossRefGoogle Scholar
  29. 29.
    Plummer, D. T. (1978) The practice of column chromatography In: Palmer, T. (ed.) An Introduction to Practical Biochemistry. McGraw-Hill Book Company, New York, pp. 61–66.Google Scholar
  30. 30.
    Puchart, V., Vrsanskâ, M., Bhat, M. K., Biely, P. (2000) Purification and characterization of a-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochim. Biophys. Acta 1524, 27–37.CrossRefGoogle Scholar
  31. 31.
    Rezessy-Szabó, J. M., Bujna, E., Hoschke, A. (2002) Effect of different carbon and nitrogen sources on a-galactosidase activity originated from Thermomyces lanuginosus CBS 395. 62/B. Acta Alimentaria 31, 73–82.CrossRefGoogle Scholar
  32. 32.
    Rezessy-Szabó, J. M., Nguyen, Q. D., Hoschke, Á., Braet, C., Hajós, G., Claeyssens, M. (2007) A novel thermostable a-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395. 62/b: Purification and characterization. Biochim. Biophys. Acta (BBA)-General Subjects. (1770) 1, 55–62.CrossRefGoogle Scholar
  33. 33.
    Shankar, S. K., Mulimani, V. H. (2007) α-Galactosidase production by Aspegillus oryzae in solid state fermentation. Biores. Technol. 98, 958–961.CrossRefGoogle Scholar
  34. 34.
    Sinitsyna, O. A., Fedorova, E. A., Vakar, I. M., Kondratieva, E. G., Rozhkova, A. M., Sokolova, L. M., Bubnova, T. M., Okunev, O. N., Chulkin, A. M., Vinetsky, Y. P., Sinitsyn, A. P. (2008) Isolation and characterization of extracellular α-galactosidases from Penicillium canescens. Biochemistry 73, 97–106. (In Russian).PubMedGoogle Scholar
  35. 35.
    Svastits-Dücső, L., Nguyen, Q. D., Lefler, D. D., Rezessy-Szabó, J. M. (2009) Effects of galactomannan as carbon source on production of a-galactosidase by Thermomyces lanuginosus: Fermentation, purification and partial characterization. Enzyme Microb. Technol. 5, 367–371.CrossRefGoogle Scholar
  36. 36.
    Wang, C. L., Li, D. F., Lu, W. Q., Wang, Y. H., Lai, C. H. (2004) Influence of cultivating conditions on the ?-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation. Lett. Appl. Microbiol. 39, 369–375.CrossRefGoogle Scholar
  37. 37.
    Zeilinger, S., Kristufek, D., Arisan-Atac, I., Hodits, R., Kubicek, C. P. (1993) Conditions of formation, purification, and characterization of an a-galactosidase of Trichoderma reesei RUT C-30. Appl. Environ. Microbiol. 59, 1347–1353.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Biological & Geological Sciences DepartmentFaculty of Education Ain Shams UniversityCairoEgypt

Personalised recommendations