Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 4, pp 361–375 | Cite as

Cerebroprotective activity of Wedelia calendulacea on global cerebral ischemia in rats

  • T. PrakashEmail author
  • D. Kotresha
  • N. Rama Rao
Article
  • 2 Downloads

Abstract

The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H2O2), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pretreated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.

Keywords

Wedelia calendulacea Cu-Zn SOD cerebral infarction brain ischemia Western blot analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., Bartkowski, H. M. (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17, 1304–1308.CrossRefGoogle Scholar
  2. 2.
    Chan, P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Metab. 21, 2–14.CrossRefGoogle Scholar
  3. 3.
    Claiborne, A. (1985) Catalase activity, In: Greenwald, R. A. (ed.), Hand Book of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Florida, USA, pp. 283–284.Google Scholar
  4. 4.
    Cui, Ke., Luo, X., Xu, K., Murthy, M. R. V. (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 771–799.CrossRefGoogle Scholar
  5. 5.
    Cuzzocrea, S., McDonald, M. C., Mazzon, E., Siriwardena, D., Costantino, G., Fulia, F., Cucinotta, G., Gitto, E., Cordaro, S., Barberi, I., De Sarro, A., Caputi, A. P., Thiemermann, C. (2000) Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Res. 875, 96–106.CrossRefGoogle Scholar
  6. 6.
    Dhindsa, R. S., Plumb-Dhindsa, P., Thorpe, T. A. (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Botany 32, 93–101.CrossRefGoogle Scholar
  7. 7.
    Dringen, R. (2000) Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649–671.CrossRefGoogle Scholar
  8. 8.
    Fridovich, I. (1975) Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159.CrossRefGoogle Scholar
  9. 9.
    Gaspar, T., Domoki, F., Lenti, L., Institoris, A., Snipes, J. A., Bari, F., Busija, D. W. (2009) Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures. Brain Res. 270, 1–9.CrossRefGoogle Scholar
  10. 10.
    Gutteridge, J. M. C., Halliwell, B. (1994) Antioxidants in Nutrition, Health and Disease. Oxford University Press.Google Scholar
  11. 11.
    Govindachari, T. R., Premila, M. S. (1985) The benzofuran norwedelic acid from Wedelia calendulacea. Phytochemistry 24, 3068.CrossRefGoogle Scholar
  12. 12.
    Harlow, L., Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.Google Scholar
  13. 13.
    Imaizumi, S., Tominaga, T., Uenohara, H., Yoshimoto, T., Suzuki, J., Fujita, Y. (1986) Initiation and propagation of lipid peroxidation in cerebral infarction models. Experimental studies. Neurol. Res. 8, 214–220.CrossRefGoogle Scholar
  14. 14.
    Imaizumi, S., Kayama, T., Suzuki, J. (1984) Chemiluminescence in hypoxic brain-the first report. Correlation between energy metabolism and free radical reaction. Stroke 15, 1061–1065.CrossRefGoogle Scholar
  15. 15.
    Jollow, D. J., Mitchell, J. R., Zampaghone, N., Gillete, J. R. (1974) Bromobenzene induced oxide as the hepatotoxic intermediate. Pharmacology 11, 161–169.CrossRefGoogle Scholar
  16. 16.
    Kelsey, N. A., Wilkins, H. M., Linseman, D. A. (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15, 7792–7814.CrossRefGoogle Scholar
  17. 17.
    Kim, Y. C. (2010) Neuroprotective phenolics in medicinal plants. Arch. Pharm. Res. 33, 1611–1632.CrossRefGoogle Scholar
  18. 18.
    Kobori, M., Yang, Z., Gong, D., Heissmeyer, V., Zhu, H., Jung, Y.-K., Angelica, M., Gakidis, M., Rao, A., Sekine, T., Ikegami, F., Yuan, C., Yuan, J. (2004) Wedelolactone suppresses LPS-induced caspase- 11 expression by directly inhibiting the IKK Complex. Cell Death Differ. 11, 123–130.CrossRefGoogle Scholar
  19. 19.
    Lapchak, P. A., Araujo, D. M. (2007) Advances in ischemic stroke treatment: neuroprotective and combination therapies. Expert. Opin. Emerg. Drugs 12, 97–112.CrossRefGoogle Scholar
  20. 20.
    Lowry, O. H., Rosebrough, N. J., Fair, A. L., Randall, R. J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  21. 21.
    Murakami, K., Kondo, T., Kawase, M., Li, Y., Sato, S., Chen, S. F. (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205–213.CrossRefGoogle Scholar
  22. 22.
    Nadkarni, A. K. (1976) Indian Materia medica. I. India Popular Prakashan Pvt. Ltd., Bombay.Google Scholar
  23. 23.
    Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., Floyd, R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. U. S. A. 87, 5144–5147.CrossRefGoogle Scholar
  24. 24.
    Prakash, T., Rama Rao, N., Viswanatha Swamy, A. H. M. (2008) Neuropharmacological studies on Wedelia calendulacea Less stem extract. Phytomedicine 15, 959–970.CrossRefGoogle Scholar
  25. 25.
    Ravindranath, V., Reed, D. J. (1990) Glutathione depletion and formation of glutathione-protein mixed disulphide following exposure of brain mitochondria to oxidative stress. Biochem. Biophys. Res. Commun. 169, 1075–1079.CrossRefGoogle Scholar
  26. 26.
    Sakamoto, A., Ohnishi, S. T., Ohnishi, T., Ogawa, R. (1991) Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res. 554, 186–192.CrossRefGoogle Scholar
  27. 27.
    Schulz, J. B., Lindenau, J., Seyfried, J., Dichgans, J. (2000) Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911.CrossRefGoogle Scholar
  28. 28.
    Sims, N. R., Anderson, M. F., Hobbs, L. M., Kong, J. Y., Phillips, S., Powell, J. A., Zaidan, E. (2000) Impairment of brain mitochondrial function by hydrogen peroxide. Mol. Brain Res. 77, 176–184.CrossRefGoogle Scholar
  29. 29.
    Utley, H. C., Bernhein, F., Hochslein, P. (1967) Effects of sulfhydryl reagent on peroxidation in microsomes. Arch. Biochem. Biophys. 260, 521–531.Google Scholar
  30. 30.
    Velikova, V., Yordanov, I., Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exognous polyamines. Plant Sci. 151, 59–66.CrossRefGoogle Scholar
  31. 31.
    Wagner, H., Geyer, B., Kiso, Y., Hikino, H., Rao, G. S. (1986) Coumestans as main active principles of the liver drugs EcliPta alba and Wedelia calendulaceae. Planta Medica 52, 370–374.CrossRefGoogle Scholar
  32. 32.
    Zahoor Ahmad Shah, Rabia Afzal Gilani, Pragya Sharma, Shashi Bharat Vohora (2005) Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. J. Ethnopharmacol. 101, 299–307.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of PharmacologyAcharya & B.M. Reddy College of PharmacyBangaloreIndia
  2. 2.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Pharmaceutical ChemistryChalapathi Institute of Pharmaceutical ScienceGunturIndia

Personalised recommendations