Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 4, pp 477–484 | Cite as

Nano Silver Treatment is Effective in Reducing Bacterial Contaminations of Araucaria Excelsa R. Br. var. Glauca Explants

  • M. K. Sarmast
  • H. SalehiEmail author
  • M. Khosh-Khui
Article

Abstract

The downside of plant tissue culture techniques is an unwanted microbial contamination. Elimination of contaminants is the first step of any successful investigation on plant tissue culture. Preliminary experiments on Araucaria excelsa R. Br. var. glauca (Norfolk-Island pine) (syn.: A. heterophylla) showed that most common decontaminants could not successfully eliminate the contamination. Therefore, nano silver (NS) colloids were evaluated for controlling contamination. Treatments were included soaking the explants in NS solution or adding NS to the culture medium. Explants were cultured on MS medium supplemented with appropriate growth regulators for their establishment. Results showed that surface sterilization followed by treatment with 200 mg l−1 of NS with soaking time of 180 min reduced the bacterial contamination from 61.5% to 11.3% and adding 400 mg l−1 NS to the medium reduced the bacterial contamination from 81.25% to 18.75%. Nano silver could be applied without adverse effects on plant growth and development. This is the first report on in vitro establishment of A. excelsa R. Br. using NS to reduce bacterial infections.

Keywords

Contamination nanobiotechnology Norfolk-Island pine silver nanoparticle tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdi, G. H., Salehi, H., Khosh-Khui, M. (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol. Plant. 30, 709–714.CrossRefGoogle Scholar
  2. 2.
    Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., Shah, S. I. (2005) Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Technol. 5, 244–249.Google Scholar
  3. 3.
    Batarseh, K. I. (2004) Anomaly and correlation of killing in the therapeutic properties of silver(I) chelating with glutamic and tartaric acids. J. Antimicrob. Chemoth. 54, 546–548.CrossRefGoogle Scholar
  4. 4.
    Bragg, P. D., Rannie, D. J. (1974) The effect of silver ions on the respiratory chain of E. coli. Can. J. Microbiol. 20, 883–889.CrossRefGoogle Scholar
  5. 5.
    Braydich-Stolle, L., Hussain, S., Schlager, J. J., Hofmann, M. C. (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412–419.CrossRefGoogle Scholar
  6. 6.
    Constantine, D. R. (1986) Micropropagation in the commercial environment. In: Withers, L., Alderson, P. G. (eds) Plant tissue culture and its agricultural applications Butterworth, London, pp. 175–186.CrossRefGoogle Scholar
  7. 7.
    Dodds, J. H., Roberts, W. L. (1981) Some inhibitory effectors on gentamicin on plant tissue culture. In Vitro 17, 467–470.CrossRefGoogle Scholar
  8. 8.
    Eapen, S., George, L. (1997) Plant regeneration from peduncle segments of oil seed brassica species: influence of silver nitrate and silver thiosulfate. Plant Cell Tiss. Org. Cult. 51, 229–232.CrossRefGoogle Scholar
  9. 9.
    Falkiner, F. R. (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture in TCL. Assoc. Plant Tiss. Cult. Newsl. 60, 13–23.Google Scholar
  10. 10.
    Geong, Y., Hwang, H., Hi, S. C. (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver. Colloids J. Mater. Sci. 40, 5413–5418.CrossRefGoogle Scholar
  11. 11.
    Giri, C. C., Shyamkmar, B., Anjaneylnu, C. (2004) Progresses in tissue culture, genetic transformation and application of biotechnology to trees: an overview. Trees 18, 115–135.CrossRefGoogle Scholar
  12. 12.
    Gyulai, G. R., Láposi, C., Herschbach, A., Veres, Gy., Fábián, L., Waters, Jr., Rennenberg, H. (2011) Conservation genetics (1710-2010) - Cloning of living fossils: Micropropagation of the oldest Hungarian black locust tree (Robinia pseudoacacia) planted in 1710 (Bábolna, Hungary). In: G. Gyulai, G. (ed.). Plant Archaeogenetics. Chapter 10. Nova Sci Publisher Inc., New York, USA.Google Scholar
  13. 13.
    Harry, I. S., Thorpe, T. A. (1990) Special problems and prospects in the propagation of woody species, in plant aging basic and applied approaches. Plenum. New York, pp. 67–74.Google Scholar
  14. 14.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  15. 15.
    Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakava, S., Watanabe, J. (2004) Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J. Inorg. Biochem. 98, 46–60.CrossRefGoogle Scholar
  16. 16.
    Park, H. J., Kim, S. H., Kim, H. J., Choi, S. (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 22, 295–302.CrossRefGoogle Scholar
  17. 17.
    Purnhauser, L., Medgyesy, P., Czakó, M., Dix, P. J., Márton, L. (1987) Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Report 6, 1–4.CrossRefGoogle Scholar
  18. 18.
    Russell, A. D., Hugo, W. B. (1994) Antimicrobial activity and action of silver. Prog. Med. Chem. 31, 351–371.CrossRefGoogle Scholar
  19. 19.
    Sarmast, M. K., Salehi, H., Khosh-Khui, M. (2009) Using plagiotropic shoot explant in tissue culture of Araucaria excelsa R. Br. var. glauca. Adv. Environ. Biol. 3, 194–294.Google Scholar
  20. 20.
    Sarmast, M. K., Salehi, H., Ramezani, A., Abolimoghadam, A. A., Niazi, A., Khosh-Khui, M. (2011) RAPD fingerprint to appraise the genetic fidelity of in vitro propagated Araucaria excelsa R. Br. var. glauca plantlets. Mol. Biotechnol. DOI 10.1007/s12033-011-9421-7.Google Scholar
  21. 21.
    Sehgal, L., Sehgal, O. P., Khosla, P. K. (1989) Micropropagation of Araucaria columnaris Hook. Ann. Sci. Forest 46, 158–160.CrossRefGoogle Scholar
  22. 22.
    Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Debabrata, D. (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103. (9 pp).CrossRefGoogle Scholar
  23. 23.
    Sondi, I., Salopek-Sondi, B. (2004) Silver nano particles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182.CrossRefGoogle Scholar
  24. 24.
    Taiz, L., Zeiger, E. (2006) Plant Physiology. Sinauer Assoc. Inc., 4 ed. 700 p.Google Scholar
  25. 25.
    Teixeira da Silva, G. A., Duong, T., Michi, T., Seiichi, F. (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Sci. Hortic. 97, 397–410.CrossRefGoogle Scholar
  26. 26.
    Wainwright, M., Grayston, S. J., de Jong, P. (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Micro. Technol. 8, 597–600.CrossRefGoogle Scholar
  27. 27.
    Zhang, P., Phansiri, S., Kaerlas, J. P. (2001) Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tiss. Org. Cult. 67, 47–54.CrossRefGoogle Scholar
  28. 28.
    Zhang, W., Qiao, X., Chen, J. (2007) Synthesis of nanosilver. Colloids and Surfaces A: Phys. Eng. Asp. 299, 22–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Horticultural Science, College of AgricultureShiraz UniversityShirazIran

Personalised recommendations