Acta Biologica Hungarica

, Volume 62, Issue 3, pp 265–278 | Cite as

Effects of Methyl Jasmonate on Accumulation of Flavonoids in Seedlings of Common Buckwheat (Fagopyrum Esculentum Moench)

  • M. HorbowiczEmail author
  • W. Wiczkowski
  • Danuta Koczkodaj
  • M. Saniewski


The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a. central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a. final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants.


Anthocyanins common buckwheat flavonoids methyl jasmonate proanthocyanidins 











quercetin 3-galactorhamnoside




Rha - rutin


cyanidin 3-galactoside


cyanidin 3-galactorhamnoside


cyanidin 3-Glucoside


cyanidin 3-glucorhamnoside




methyl jasmonate


jasmonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, T. A., Tanner, C. A., Rothen, M., Bullington, J. (2008) Wound-induced accumulation of condensed tannins in turtlegrass, Thalassia testudinum. Aquat. Bot. 89, 27–33.CrossRefGoogle Scholar
  2. 2.
    Blando, F., Scardino, A. P., De Bellis, L., Nicoletti, I., Giovinazzo, G. (2005) Characterization of in vitro anthocyanin-producing sour cherry (Prunus cerasus L.) callus cultures. Food Res. Int. 38, 937–942.CrossRefGoogle Scholar
  3. 3.
    Close, D. C., Beadle, C. L. (2003) The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149–161.CrossRefGoogle Scholar
  4. 4.
    Creelman, R. A., Mullet, J. E. (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114–4119.CrossRefGoogle Scholar
  5. 5.
    Dixon, R. A., Xie, D.-Y., Sharma, S. B. (2005) Proanthocyanidins - a. final frontier in flavonoid research? New Phytol. 165, 9–28.CrossRefGoogle Scholar
  6. 6.
    Durkee, A. B. (1977) Polyphenols of the bran-aleurone fraction of buckwheat seed (Fagopyrum sagitatum Gilib). J. Agric. Food Chem. 25, 286–287.CrossRefGoogle Scholar
  7. 7.
    Farmer, E. E., Ryan, C. A. (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87, 7713–7716.CrossRefGoogle Scholar
  8. 8.
    Franceschi, V. R., Grimes, H. D. (1991) Induction of soybean vegetative storage proteins and antho-cyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 88, 6745–6749.CrossRefGoogle Scholar
  9. 9.
    Horbowicz, M., Grzesiuk, A., Dbski, H., Koczkodaj, D., Saniewski, M. (2008) Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Crac. Ser Bot. 52, 71–78.Google Scholar
  10. 10.
    Kim, S. J., Maeda, T., Sarker, M. Z. I., Takigawa, S., Matsuura-Endo, C., Yamauchi, H. et al. (2007) Identification of anthocyanins in the sprouts of buckwheat. J. Agric. Food Chem. 55, 6314–6318.CrossRefGoogle Scholar
  11. 11.
    Liu, C.-L., Chen, Y.-S., Yang, J.-H., Chiang, B.-H. (2008) Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. J. Agric. Food Chem. 56, 173–178.CrossRefGoogle Scholar
  12. 12.
    Lin, L.-Y, Peng, C.-C, Yang, Y.-L., Peng, R. Y. (2008) Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. J. Agric. Food Chem. 56, 1216–1223.CrossRefGoogle Scholar
  13. 13.
    Mancinelli, A. L. (1990) Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiol. 92, 1191–1195.CrossRefGoogle Scholar
  14. 14.
    Matsui, K., Eguchi, K., Tetsuka, T. (2008) A. novel gene that divers the anthocyanin biosynthetic pathway towards the production of proanthocyanidins in common buckwheat (Fagopyrum esculentum). Breed. Sci. 58, 143–148.CrossRefGoogle Scholar
  15. 15.
    Moumou, Y., Trotin, F., Dubois, J., Vasseur, J., El Boustani, E. (1992) Influence of culture conditions on polyphenol production by Fagopyrum esculentum tissue cultures. J. Nat. Prod. 55, 33–38.CrossRefGoogle Scholar
  16. 16.
    Moumou, Y., Vasseur, J., Trotin, F., Dubois, J. (1992) Catechin production by callus cultures of Fagopyrum esculentum. Phytochemistry 31, 1239–1241.CrossRefGoogle Scholar
  17. 17.
    Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M. (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour J. Ethnopharmacol. 72, 35–42.CrossRefGoogle Scholar
  18. 18.
    Rabino, I., Mancinelli, A. L. (1986) Light, temperature and anthocyanins production. Plant Physiol 81, 922–924.CrossRefGoogle Scholar
  19. 19.
    Saniewski, A., Horbowicz, M., Puchalski, J. (2006) Induction of anthocyanins accumulation by methyl jasmonate in shoots of Crassula multicava Lam. Acta Agrobot. 59, 43–50.CrossRefGoogle Scholar
  20. 20.
    Saniewski, M., Horbowicz, M., Puchalski, J., Ueda, J. (2003) Methyl jasmonate stimulates the formation and the accumulation of anthocyanins in Kalanchoe blossfeldiana. Acta Physiol. Plant. 25, 143–149.CrossRefGoogle Scholar
  21. 21.
    Shan, X., Zhang, Y., Peng, W., Xie, D. (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60, 3849–3860.CrossRefGoogle Scholar
  22. 22.
    Steyn, W. J., Wand, S. J. E., Holcroft, D. M., Jacobs, G. (2002) Anthocyanins in vegetative tissues: proposed unified function in photoprotection. New Phytol. 155, 349–361.CrossRefGoogle Scholar
  23. 23.
    Suzuki, T., Kim, S. J., Yamauchi, H., Takigawa, S., Honda, Y., Mukasa, Y. (2005) Characterization of a. flavonoid 3-O-glucosyltransferase and its activity during cotyledon growth in buckwheat (Fagopyrum esculentum). Plant Sci. 169, 943–948.CrossRefGoogle Scholar
  24. 24.
    Suzuki, T., Takigawa, S., Yamauchi, H., Matsuura-Endo, C., Hashimoto, N., Mukasa, Y., Noda, T. (2007) Identification of anthocyanins in buckwheat sprouts and petals. In: Proceedings of the 10th International Symposium on Buckwheat, Yangling, People Republic of China, pp. 483–491.Google Scholar
  25. 25.
    Tamari, G., Borochov, A., Atzorn, R., Weiss, D. (1995) Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: in possible role in wound response. Physiol. Plant. 94, 45–50.CrossRefGoogle Scholar
  26. 26.
    Tanaka, N. (1996) Rutin and other polyphenols in Fagopyrum esculentum hairy roots. Nat. Med 50, 269–273.Google Scholar
  27. 27.
    Tanner, G. J., Francki, K. T., Abrahams, S., Watson, J. M., Larkin, P. J., Ashton, A. R. (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647–31656.CrossRefGoogle Scholar
  28. 28.
    Troyer, J. R. (1964) Anthocyanin formation in excised segments of buckwheat-seedling hypocotyls. Plant Physiol. 39, 907–912.CrossRefGoogle Scholar
  29. 29.
    Ueda, J., Kato, J. (1980) Isolation and identification of a. senescence promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol. 66, 246–249.CrossRefGoogle Scholar
  30. 30.
    Watanabe, M. (2007) An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity. Biosci. Biotechnol Biochem. 71, 579–582.CrossRefGoogle Scholar
  31. 31.
    Watanabe, M., Ohshita, Y., Tsushida, T. (1997) Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) hulls. J. Agric. FoodChem. 45, 1039–1044.CrossRefGoogle Scholar
  32. 32.
    Westernack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H. (2006) The wound response in tomato - role of jasmonic acid. J. Plant Physiol. 163, 297–306.CrossRefGoogle Scholar
  33. 33.
    Wijngaard, H. H., Arendt, E. K. (2006) Buckwheat. Cereal Chem. 83, 391–401.CrossRefGoogle Scholar
  34. 34.
    Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A. colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.CrossRefGoogle Scholar
  35. 35.
    Xie, D.-Y., Sharma, S. B., Paiva, N. L., Ferreira, D., Dixon, R. A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399.CrossRefGoogle Scholar
  36. 36.
    Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T. (2009) The Arabidopsis coronatine insensitivel protein is a. jasmonate receptor. Plant Cell 21, 2220–2236.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Horbowicz
    • 1
    Email author
  • W. Wiczkowski
    • 2
  • Danuta Koczkodaj
    • 1
  • M. Saniewski
    • 3
  1. 1.Department of Plant Physiology and Genetics, Institute of BiologyUniversity of PodlasieSiedlcePoland
  2. 2.Institute of Animal Reproduction and Food ResearchPolish Academy of SciencesOlsztynPoland
  3. 3.Research Institute of Pomology and FloricultureSkierniewicePoland

Personalised recommendations