Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 3, pp 244–254 | Cite as

Effect of Garlic on High Fat Induced Obesity

  • M.-J. Kim
  • H. K. KimEmail author
Article

Abstract

The present study was performed to examine the effects of garlic on obesity and blood lipid profiles in high-fat induced obesity mice model, and to elucidate the molecular mechanisms responsible for such effect. C57BL/6 mice were fed a. standard diet (STD) or high-fat diet (HFD) for 5 weeks to induce obesity. Mice were then randomly divided into four groups with 10 mice per group, and fed experimental diet for 4 weeks; STD group, HFD group, HFD containing 2% or 4% garlic group (HFD + G2 or HFD + G4, respectively). Administration of garlic significantly reduced HFD-induced body weight, epididymal fat accumulation, hyperlipidemia and hypercholesterolemia. Consequently, the atherogenic indexes were reduced by 83% and 91%, respectively, in 2% and 4% garlic supplemented group. Liver steatosis induced by HFD was ameliorated by garlic supplementation. Furthermore, garlic affected the down regulation of expression patterns of epididymal adipose tissue genes such as peroxisome proliferator-activated receptor γ (PPARγ), acetyl CoA carboxylase (ACC), adipose specific fatty acid binding protein (aP2), and glycer-ol-3-phosphate dehydrogenase (GPDH). These results suggest that garlic may have a. potential benefit in preventing obesity.

Keywords

Garlic hyperlipidemia fat accumulated genes anti-obesity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Qattan, K. K., Alnaqeep, M. A., Ali, M. (1953) The antihypertensive effect of garlic (Allium sativum) in the rat two-kidney - one clip Goldblatt model. J. Ethnopharmacol. 66, 217–222.CrossRefGoogle Scholar
  2. 2.
    Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., Itakura, Y. (2001) Intake of garlic and its bioactive components. J. Nutr. 131, 955S–962S.CrossRefGoogle Scholar
  3. 3.
    Augusti, K. T., Sheela, C. G. (1996) Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia 52, 115–120.CrossRefGoogle Scholar
  4. 4.
    Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E., Lee, W. M. (2006) Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223–227.CrossRefGoogle Scholar
  5. 5.
    Den Boer, M., Voshol, R. J., Kuipers, F., Havekes, L. M., Romijn, J. A. (2004) Hepatic steatosis: a. mediator of the metabolic syndrome: lessons from animal models. Arterioscler., Thromb. Vase. Biol 24, 644–649.CrossRefGoogle Scholar
  6. 6.
    Duval, C., Miiller, M., Kersten, S. (2007) PPARalpha and dyslipidemia. Biochim. Biophys. Acta 1771, 961–971.CrossRefGoogle Scholar
  7. 7.
    Eidi, A., Eidi, M., Esmaeli, E. (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetes. Phytomed. 13, 624–629.CrossRefGoogle Scholar
  8. 8.
    Flier, J. S. (1995) The adipocyte: storage depot or node on the energy information superhighway? Cell 80, 15–18.Google Scholar
  9. 9.
    Hanley, A. J., Williams, K., Festa, A., Wagenknecht, L. E., D’Agostino, R. B. Jr., Haffner, S. M. (2005) Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 54, 3140–3147.CrossRefGoogle Scholar
  10. 10.
    Koscielny, J., Klussendorf D., Latza, R., Schmitt, R., Radke, H., Siegel, G., Kiesewettwe, H. (1999) The antiatherosclerotic effect of Allium sativum. Atherosclerosis 144, 237–246.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Zalameda, L., Kim, K. W., Wang, M., McCarter, J. D. (2007) Discovery of acetyl-coenzyme A. carboxylase 2 inhibitors: comparison of a. fluorescence intensity-based phosphate assay and a. fluorescence polarization-based ADP assay for high-throughput screening. Assay Drug Dev. Technol. 5, 225–235.CrossRefGoogle Scholar
  12. 12.
    MacDougald, O. A., Lane, M. D. (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 835–839.CrossRefGoogle Scholar
  13. 13.
    Margareto, J., Larrarte, E., Marti, A., Martinez, J. A. (2001) Up-regulation of a. thermogenesis-related gene (UCP1) and down-regulation of PPARgamma and aP2 genes in adipose tissue: possible features of the antiobesity effects of a. beta3-adrenergic agonist. Biochem. Pharmacol. 61, 1471–1478.CrossRefGoogle Scholar
  14. 14.
    Moreno, D. A., Ilic, N., Poulev, A., Brasaemle, D. L., Fried, S. K., Raskin, I. (2003) Inhibitory effects of grape seed extracts on lipases. Nutr. 19, 876–879.CrossRefGoogle Scholar
  15. 15.
    Morqan, K., Uyuni, A., Nandqiri, G., Mao, L., Castaneda, L., Kathirvel, E., French, S. W., Morqan, T. R. (2008) Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 20, 843–854.CrossRefGoogle Scholar
  16. 16.
    Moustaid, N., Jones, B. H., Taylor, J. W. (1996) Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J. Nutr. 126, 865–870.CrossRefGoogle Scholar
  17. 17.
    Orekhov, A. N., Griinwald, J. (1997) Effects of garlic on atherosclerosis. Nutr. 13, 656–663.CrossRefGoogle Scholar
  18. 18.
    Raskin, I., Ribnicky, D. M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno. D. A., Ripoll, C., Yakoby N., O’Neal, J. M., Cornwell, T., Pastor, I., Fridlender, B. (2002) Plants and human health in the twenty-first century. Trends Biotechnol. 20, 522–531.CrossRefGoogle Scholar
  19. 19.
    Rosen, E. D., Walkey, C. J., Puigserver, P., Spiegelman, B. M. (2000) Transcriptional regulation of adipogenesis. GenesDev. 14, 1293–1307.Google Scholar
  20. 20.
    Sharifi, A. M., Darabi, R., Akbarloo, N. (2003) Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J. Ethnopharmacol. 86, 219–224.CrossRefGoogle Scholar
  21. 21.
    Tontonoz, P., Hu, E., Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a. lipid-activated transcription factor. Cell 79, 1147–1156.CrossRefGoogle Scholar
  22. 22.
    Torontoz, P., Hu, E., Spiegelman, B. M. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Set USA 92, 9856–9860.CrossRefGoogle Scholar
  23. 23.
    Vidal-Puig, A., Jimenez-Linan, M., Lowell, B. B., Hamann, A., Hu, E., Spiegelman, B., Flier, J. S., Moller, D. E. (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J. Clin. Invest. 97, 2553–2561.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Pharmacology, School of MedicineKyunghee UniversitySeoulSouth Korea
  2. 2.Department of Food and BiotechnologyHanseo UniversitySeosan, ChungnamSouth Korea

Personalised recommendations