Acta Biologica Hungarica

, Volume 62, Issue 2, pp 156–170 | Cite as

Determination of Stress Responses Induced by Aluminum in Maize (Zea Mays)

  • Filiz VardarEmail author
  • Iıil İsmailoĝlu
  • Deniz İnan
  • Meral Ünal


To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yildizi) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.


Aluminum toxicity root growth callose intracellular Ca2+ peroxidase activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akıncı, Ş., Losel, D. M. (2010) The effects of water stress and recovery periods on soluble sugars and starch content in cucumber cultivars. Fresen. Environ. Bull. 19, 164–171.Google Scholar
  2. 2.
    Aquino, P., Carrión, F., Calvo, R., Flores. D. (2001) Selected maize statistics. In: Pingali, P. L. (ed.) CIMMYT 1999–2000 World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, DF, pp. 45–59.Google Scholar
  3. 3.
    Barceló, A. R., Gómez-Ros, L. V., Gabaldón, C., López-Serrano, M., Pomar, F., Carrión, J. S., Pedreño, M. A. (2004) Basic peroxidases: the gateway for lignin evolution. Phytochem. Rev. 3, 61–78.Google Scholar
  4. 4.
    Birecka, H., Briber, K. A., Catalfamo, J. L. (1973) Comparative studies on tobacco pit and sweet potato root isoperoxidases in relation to injury, indolacetic acid and ethylene effects. Plant Physiol. 52, 43–49.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Budiková, S. (1999) Structural changes and aluminum distribution in maize root tissues. Biol. Plant. 42, 259–266.Google Scholar
  6. 6.
    Campos, J. M. S., Vicini, L. F. (2003) Cytotoxicity of aluminum on meristematic cells of Zea mays and Allium cepa. Caryologia 56, 65–73.Google Scholar
  7. 7.
    Ciamporova, M. (2002) Morphological and structural responses of plant roots to aluminum at organ, tissue and cellular levels. Biol. Plant. 45, 161–171.Google Scholar
  8. 8.
    Clune, T. S., Copeland, L. (1999) Effects of aluminum on canola roots. Plant and Soil 216, 27–33.Google Scholar
  9. 9.
    Çakmak, I., Horst, W. J. (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468.Google Scholar
  10. 10.
    Delhaize, E., Ryan P. R. (1995) Aluminum toxicity and tolerance in plants. Plant Physiol. 107, 315–321.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T., Matsumoto, H. (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. PNAS 101, 15249–15254.PubMedGoogle Scholar
  12. 12.
    Eren, P., Vardar, F., Birbir, Y., İnan, D., Ünal, M. (2010) Cytotoxic effects of an electromagnetic field on the meristematic root cells of lentils (Lens clunaris Medik.). Fresen. Environ. Bull. 19, 481–488.Google Scholar
  13. 13.
    Ezaki, B., Gardner, R. C., Ezaki, Y., Matsumoto, H. (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 122, 657–665.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ezaki, B., Katsuhara, M., Kawamura, M., Matsumoto, H. (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol. 127, 918–927.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ezaki, B., Suzuki, M., Motoda, H., Kawamura, M., Nakashima, S., Matsumoto, H. (2004) Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1 and AtGST11 in response to aluminum stress. Plant Physiol. 134, 1672–1682.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Fanelli, C., Coppola, S., Barone, R., Colussi, C., Gualandi, G., Volpe, P., Ghibelli, L. (1999) Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 13, 95–102.PubMedGoogle Scholar
  17. 17.
    Feder, N., O’Brien, T. P. (1968) Plant microtechnique: Some principles and new methods. Am. J. Bot. 55, 123–142.Google Scholar
  18. 18.
    Fiskesjö, G. (1988) The Allium test as an alternative in environmental studies: The relative toxicity of metal ions. Mutat. Res. 197, 243–260.PubMedGoogle Scholar
  19. 19.
    Giaveno, C. D., Filho, J. B. M. (2000) Rapid screening for aluminum tolerance in maize (Zea mays L.). Genet. Mol. Biol. 23, 4–11.Google Scholar
  20. 20.
    Horst, W. J., Püschel, A. K., Schmohl, N. (1997) Induction of callose formation is a sensitive marker for genotypic aluminum sensitivity in maize. Plant and Soil 192, 23–30.Google Scholar
  21. 21.
    Jones, D. L., Kochian L. V. (1995) Aluminum inhibition of the inositol 1-4-5-trisphosphate signal transduction pathway in wheat roots: A role in aluminum toxicity? Plant Cell 7, 1913–1922.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kenrick, J., Knox, R. B. (1985) Self-imcompatibility in nitrogen-fixing tree Acacia retinodes: Quantitative cytology of pollen tube growth. Theor. Appl. Genet. 69, 481–488.PubMedGoogle Scholar
  23. 23.
    Konarska, A. (2008) Changes in the ultrastructure of Capsicum annuum L. seedlings roots under aluminum stress conditions. Acta Agrobot. 61, 27–32.Google Scholar
  24. 24.
    Kornosor, S. (1999) Entomological problems of maize in Turkey. Proc. XX Conf. International Working Group on Ostrinia and Other Maize Pests (Adana, Turkey), pp. 14–23.Google Scholar
  25. 25.
    Liu, K., Luan, S. (2001) Internal aluminum block of plant inward K+ channels. Plant Cell 13, 1453–1465.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ma, Q., Rengel, Z., Kuo, J. (2002) Aluminium toxicity in rye (Secale cereale): Root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann. Bot. 89, 241–244.PubMedCentralGoogle Scholar
  27. 27.
    Massot, N., Llugany, M., Poschenrieder, C., Barceló, J. (1999) Callose production as indicator of aluminum toxicity in bean cultivars. J. Plant Nutr. 22, 1–10.Google Scholar
  28. 28.
    Matsumoto, H. (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int. Rev. Cytol. 200, 1–47.PubMedGoogle Scholar
  29. 29.
    McGee-Russel, S. M. (1958) Histochemical methods for calcium. J. Histochem. Cytochem. 6, 22.Google Scholar
  30. 30.
    Mishra, P., Dubey, R. S. (2008) Effect of aluminum on metabolism of starch and sugars in growing rice seedlings. Acta Physiol. Plant. 30, 265–275.Google Scholar
  31. 31.
    Özyiğit, İ. İ., Akıncı, Ş. (2009) Effects of stress factors (aluminum, cadmium and drought) on stomata of Roman neetle (Urtica pilulifera L.). Not. Bot. Hort. Agrobot. Cluj. 37, 108–115.Google Scholar
  32. 32.
    Penel, C., Gaspar, T., Greppin H. (1992) Plant Peroxidases. University of Geneva, Geneva, Switzerland, pp. 1980–1990.Google Scholar
  33. 33.
    Rengel, Z., Zhang, W. H. (2003) Role of dynamics of intracellular calcium in aluminum-toxicity syndrome. New Phytol. 159, 295–314.Google Scholar
  34. 34.
    Richards, K. D., Schott, E. J., Sharma, Y. K., Davis, K. R., Gardner, R. C. (1998) Aluminum induces oxidative stress genes in Arabidopdis thaliana. Plant Physiol. 116, 409–418.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rout, G. R., Samantaray, S., Das, P. (2001) Aluminium toxicity in plants: a review. Agronomie 21, 3–21.Google Scholar
  36. 36.
    Roy, A. K., Sharma, A., Talukder, G. (1989) A time course study on effects of aluminium on mitotic cell division in Allium sativum. Mutat. Res. 227, 221–226.PubMedGoogle Scholar
  37. 37.
    Ryan, P. R., Kochian, L. V. (1993) Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolarence. Plant Physiol. 102, 975–982.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Sasaki, M., Yamamoto, Y., Matsumoto, H. (1996) Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol. Plant. 96, 193–198.Google Scholar
  39. 39.
    Sass, J. E. (1951) Botanical Microtechnique. Iowa State University Press, Ames.Google Scholar
  40. 40.
    Silva, I. R., Smyth, T. J., Moxley, D. F., Carter, T. E., Allen, N. S., Rufty, T. W. (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol. 123, 543–552.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Šimonovičová, M., Huttová, J., Mistrík, I., Široká, B., Tamás, L. (2004) Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma 224, 91–98.PubMedGoogle Scholar
  42. 42.
    Sivaguru, M., Fujiwara, T., Samaj, J., Baluska, F., Yang, Z. M., Osawa, H, Maeda, T., Mori, T., Volkmann, D., Matsumoto, H. (2000) Aluminum-induced 1 → 3-β-β-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol. 124, 991–1005.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Tamás, L., Budíková, S., Huttová, J., Mistrík, I., Šimonovičová, M., Široká, B. (2005) Aluminuminduced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidasemediated hydrogen peroxide production. Plant Cell Rep. 24, 189–194.PubMedGoogle Scholar
  44. 44.
    Tohidi-Zahra, Baghizadeh-Amin, Enteshari-Shekofeh (2009) The effects of aluminum and phosphorous on Brassica napus. American-Eyrasian J. Agric. & Environ. Sci. 6, 137–142.Google Scholar
  45. 45.
    Vardar, F., Arıcan, E., Gözükırmızı, N. (2006) Effects of aluminum on in vitro root growth and seed germination of tobacco (Nicotiana tabacum L.). Adv. Food Sci. 28, 85–88.Google Scholar
  46. 46.
    Vardar, F., Ünal, M. (2007) Aluminum toxicity and resistance in higher plants. Adv. Mol. Biol. 1, 1–12.Google Scholar
  47. 47.
    Von Uexküll, H. R., Mutert, E. (1995) Global extent, development and economic impact of acid soils. In: Data R. A. (ed.), Plant-Soil Interactions at Low pH. Principles and Management. Kluwer Academic Publishers, Dordrecht.Google Scholar
  48. 48.
    Wissemeir, A. H., Diening, A., Hergenröder, A., Horst, W. J. (1992) Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese. Plant and Soil 192, 23–30.Google Scholar
  49. 49.
    Xue, Y. J., Tao, L., Yang, Z. M. (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differently regulated by jasmonate and nitric oxide. J. of Agr. & Food Chem. 56, 9676–9684.Google Scholar
  50. 50.
    Yamamoto, Y., Kobayashi, Y., Devi, S. R., Rikiishi, S., Matsumoto, H. (2003) Oxidative stress triggered by aluminum in plant roots. Plant and Soil 255, 239–243.Google Scholar
  51. 51.
    Yamamoto, Y., Kobayashi, Y., Matsumoto, H. (2001) Lipid peroxidation is an early symptom triggered by aluminum but not only the primary cause of elongation inhibition in pea roots. Plant Physiol. 125, 199–208.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yumurtacı, A., Aydin, Y., Uncuoğlu, A. A. (2009) Cytological changes in Turkish durum and bread wheat genotypes in response to salt stress. Acta Biol. Hung. 60, 221–232.PubMedGoogle Scholar
  53. 53.
    Yumurtaci, A., Vardar, F., Ünal, M. (2007) Inhibition of barley root growth by actinomycin D: Effects on mitotic activity, protein content and peroxidase activity. Fresen. Environ. Bull. 16, 917–921.Google Scholar
  54. 54.
    Zhang, H., Zhang, S., Meng, Q., Zou, J., Jiang, W., Liu, D. (2009) Effects of aluminum on nucleoli in root tip cells root growth and the antioxidant defense system in Vicia faba L. Acta Biol. Cracov. 51, 99–106.Google Scholar
  55. 55.
    Zheng, S. J., Yang, J. L. (2005) Target sites of aluminum phytotoxicity. Biol. Plant. 49, 321–331.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Filiz Vardar
    • 1
    Email author
  • Iıil İsmailoĝlu
    • 1
  • Deniz İnan
    • 2
  • Meral Ünal
    • 1
  1. 1.Department of Biology, Science and Art FacultyMarmara UniversityİstanbulTurkey
  2. 2.Department of Statistic, Science and Art FacultyMarmara UniversityİstanbulTurkey

Personalised recommendations