Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 1, pp 22–33 | Cite as

Frequencies of Organophosphate Resistance-Associated Mutations in the Acetylcholinesterase Gene of Field Collected Olive Fly (Bactrocera Oleae) Populations Under Different Insecticide Regimes

  • Sibel Başkurt
  • E. Doğaç
  • V. Taşkin
  • Belgin Göçmen TaşkinEmail author
Article

Abstract

In the present study, the frequencies of three organophosphate (OP) resistance-associated mutations in acetylcholinesterase gene of Bactrocera oleae (BoAce) populations collected from 8 different important olivegrowing areas in the west part of Turkey were determined. Populations were sampled from the areas that have been treated with only the pyrethroid α-cypermethrin; pyrethroids plus OPs; deltamethrin with pheromone eco-traps, and no insecticide treatment applied areas for many years. For Ile214Val and Gly488Ser point mutations PCR-RFLP and for Δ3Q deletion mutation PCR diagnostic tests were carried out. Seventy-two percent of the total individuals analyzed in the study were exhibited heterozygous genotype (RS) for both Ile214Val and Gly488Ser point and homozygous susceptible genotype (SS) for Δ3Q deletion mutations. This RS/RS/SS combination together with RS/RR/SS with the frequency of 13% were the most common two combinations observed in all of the populations under different insecticide regimes, even in the populations under no insecticide pressure for many years. Independent evaluation of the three mutations resulted in 0.450, 0.534 and 0.037 frequency values for the resistant alleles of 214Val, 488Ser and Δ3Q mutations, respectively. Among the studied populations, the frequencies of resistant alleles for the positions of 214 and 488 were not differed from each other. However, in 3 of the populations the frequency of the R allele of Δ3Q was zero and it changed between 0.025 and 0.100 in the remaining five populations. Results of this study contributed to the distribution pattern of the two point mutations in Europe and a pattern for Δ3Q mutation was determined for the first time in the field collected olive fly samples.

Keywords

Acethylcholinesterase Bactrocera oleae insecticide resistance PCR-RFLP resistance mutations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References References

  1. 1.
    Augustinos, A. A., Mamuris, Z., Stratikopoulos, E. E., D’Amelio, S., Zacharopoulou, A., Mathiopoulos, K. D. (2005) Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125, 231–241.CrossRefGoogle Scholar
  2. 2.
    Ausubel, F. M., Brent, R., Kingston, R. E., Seidman, J. G., Smith, J. S., Struhl, K. (2002) Short Protocols in Molecular Biology. 5th Edition. Wiley, New York.Google Scholar
  3. 3.
    Bender, W., Spierer, P., Hogness, D. S. (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and bithorax complex in D. melanogaster. J. Mol. Biol. 168, 17–33.CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Newcomb, R., Forbes, E., McKenzie, J., Batterham, P. (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem. Molec. Biol. 31, 805–816.CrossRefGoogle Scholar
  5. 5.
    Devonshire, A. L., Moores, G. D. (1984) Different forms of insensitive acetylcholinesterase in insecticide-resistant house-flies (Musca domestica). Pestic. Biochem. Phys. 21, 336–340.CrossRefGoogle Scholar
  6. 6.
    Fournier, D., Bride, J. M., Hoffman, F., Karch, F. (1992) Acetylcholinesterase: two types of modifications confer resistance to insecticides. J. Biol. Chem. 267, 14270–14274.PubMedGoogle Scholar
  7. 7.
    Fournier, D. (2005) Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem-Biol. Interact. 157, 257–261.CrossRefGoogle Scholar
  8. 8.
    Hawkes, N. J., Janes, R. W., Hemingway, J., Vontas, J. (2005) Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pest. Biochem. Phys. 81, 154–163.CrossRefGoogle Scholar
  9. 9.
    Hsu, J. C., Haymer, D. S., Wu, W. J., Feng, T. H. (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Molec. Biol. 36, 396–402.CrossRefGoogle Scholar
  10. 10.
    Kakani, E. G., Mathiopoulos, K. D. (2008) Organophosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae. J. Appl. Entomol. 132, 762–771.CrossRefGoogle Scholar
  11. 11.
    Kakani, E. G., Ioannides, I. M., Margaritopoulos, J. T., Seraphides, N. A., Skouras, J. A., Mathiopoulus, K. D. (2008) A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem. Molec. Biol. 38, 781–787.CrossRefGoogle Scholar
  12. 12.
    Kozaki, T., Shono, T., Tomita, T., Kono, Y. (2001) Fenitroxon insensitive acetylcholinesterases of the house fly, Musca domestica associated with point mutations. Insect Biochem. Molec. Biol. 31, 991–997.CrossRefGoogle Scholar
  13. 13.
    Kozaki, T., Brady, S. G., Scott, J. G. (2009) Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pestic. Biochem. Phys. 95, 6–11.CrossRefGoogle Scholar
  14. 14.
    Margaritopoulos, J. T., Skavdis, G., Kalogiannis, N., Nikou, D., Morou, E., Skouras, P. J., Tsitsipis, J. A., Vontas, J. (2008) Efficacy of the pyrethroid alpha-cypermethrin against Bactrocera oleae populations from Greece, and improved diagnostic for an iAChE mutation. Pest. Manag. Sci. 64, 900–908.CrossRefGoogle Scholar
  15. 15.
    Mutero, A., Pralavorio, M., Bride, J. M., Fournier, D. (1994) Resistance-associated point mutation in insecticide insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA 91, 5922–5926.CrossRefGoogle Scholar
  16. 16.
    Nardi, F., Carapelli, A., Dallai, R., Frati, F. (2003) The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol. Biol. 12, 605–611.CrossRefGoogle Scholar
  17. 17.
    Nardi, F., Carapelli, A., Dallai, R., Roderick, G. K., Frati, F. (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol. Ecol. 14, 2729–2738.CrossRefGoogle Scholar
  18. 18.
    Nardi, F., Carapelli, A., Vontas, J. G., Dallai, R., Roderick, G. K., Frati, F. (2006) Geographical distribution and evolutionary history of organophosphate-resistant Ace alleles in the olive fly (Bactrocera oleae). Insect Biochem. Molec. Biol. 36, 593–602.CrossRefGoogle Scholar
  19. 19.
    Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell, R. J., Oakeshott, J. G. (2005) Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop-1 locus of the sheep blowfly, Lucilia cuprina. J. Mol. Evol. 60, 207–220.CrossRefGoogle Scholar
  20. 20.
    Plapp, F. W. (1984) The genetic basis of insecticide resistance in the house fly: Evidence that a single locus plays a major role in metabolic resistance to insecticides. Pestic. Biochem. Phys. 22, 194–201.CrossRefGoogle Scholar
  21. 21.
    Republic of Turkey Ministry of Agriculture and Rural Affairs, General Directorate of Agricultural Research (2001) Instructions for resistant management in olive orchards. (In Turkish.) https://doi.org/www.tagem.gov.tr/YAYINLAR/ZEYTIN/icindekiler.htm. Accessed 18 December 2009.Google Scholar
  22. 22.
    Russell, R. J., Claudianos, C., Campbell, P. M., Horne, I., Sutherland, T. D., Oakeshott, J. G. (2004) Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pest. Biochem. Phys. 79, 84–93.CrossRefGoogle Scholar
  23. 23.
    Vontas, J. G., Hejazi, M. J., Hawkes, N. J., Cosmidis, N., Loukas, M., Hemingway, J. (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11, 329–336.CrossRefGoogle Scholar
  24. 24.
    Walsh, S. B., Dolden, T. A., Moores, G. D., Kristensen, M., Lewis, T., Devonshire, A. L., Williamson, M. S. (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 359, 175–181.CrossRefGoogle Scholar
  25. 25.
    Dane, K. M., Johnson, M. W. (2010) Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 151–169.CrossRefGoogle Scholar
  26. 26.
    Menozzi, P., Shi, M. A., Lougarre, A., Tang, Z. H., Fournier, D. (2004) Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol. Biol. 4, 4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sibel Başkurt
    • 1
  • E. Doğaç
    • 1
  • V. Taşkin
    • 1
  • Belgin Göçmen Taşkin
    • 1
    Email author
  1. 1.Department of BiologyMuğla UniversityKötekli, MuğlaTurkey

Personalised recommendations