Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 1, pp 95–105 | Cite as

Partial Characterization of Bacteriocins Produced by Two Lactobacillus Strains with Probiotic Properties

  • Başar Uymaz
  • Nefise Akkoç
  • M. AkçelikEmail author
Article

Abstract

The probiotic characteristics of Lactobacillus brevis BG18 and Lb. plantarum BG33, isolated from traditional Turkish Tulum cheese were assessed. These two bacteriocinproducer strains exhibited good probiotic characteristics such as resistance in media containing 0.3% bile salt, pepsin (3 mg mL−1), and pancreatine (1 mg mL−1) as well as acid resistance at pH 2. They were also adhered to Caco-2 epithelial cells in a manner comparable to Escherichia coli LMG3083 (ETEC) and Salmonella Typhimurium SL1344. The strains produced a heat-stable antimicrobial compound that was shown to be proteinaceous in nature, and therefore, referred to as bacteriocins. The bacteriocins were able to inhibit growth of a number grampositive bacteria such as Listeria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Bacillus cereus. Tricine-SDS-PAGE of the active fraction resulted in single bands with estimated molecular masses of 2.5 kDA and 2.7 kDA for Lb. brevis BG18 and Lb. plantarum BG33 bacteriocins, respectively.

Keywords

Lactobacillus brevis Lb. plantarum probiotic properties bacteriocin Caco-2 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beasley, S. S., Saris, P. E. J. (2004) Nisin-producing Lactococcus lactis strains from human milk. Appl. Environ. Microbiol. 70, 5051–5053.CrossRefGoogle Scholar
  2. 2.
    Cakmakci, S., Dagdemir, E., Hayaloglu, A. A., Gurses, M., Gundogdu, E. (2008) Influence of ripening container on the lactic acid bacteria population in “Tulum” cheese. World J. Microb. Biot. 24, 293–299.CrossRefGoogle Scholar
  3. 3.
    Casey, P. G., Gardiner, G. E., Casey, G., Bradshaw, B., Lawlor, P. B., Lynch, P. B., Leonard, F. C., Stanton, C., Ross, R. P., Fitzgerald, G. F., Hill, C. (2007) A 5-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 73, 1858–1863.CrossRefGoogle Scholar
  4. 4.
    Charteris, W. P., Kelly, P. M., Morelli, L., Collins, J. K. (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 6, 11636–1643.Google Scholar
  5. 5.
    Conway, P. L. (1996) Selection criteria for probiotic microorganisms. Asia Pac. J. Clin. Nutr. 5, 10–14.PubMedGoogle Scholar
  6. 6.
    Conway, P., Gorbach, S. L., Goldin, B. R. (1987) Survival of Lactic acid bacteria in human stomach and adhesion to intestinal cells. J. Dairy Sci. 70, 1–12.CrossRefGoogle Scholar
  7. 7.
    Daba, H., Lacroix, C., Huang, J., Simard, R. E. (1993) Influence of growth conditions on production and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57, 3450–3455.Google Scholar
  8. 8.
    Fuller, R. (1991) Probiotics in human medicine. Gut 32, 439–442.CrossRefGoogle Scholar
  9. 9.
    Granger, M., van Reenen, C. A., Dicks, L. M. T. (2008) Effect of gastro-intestinal conditions on the growth of Enterococcus mundtii ST4SA, and production of bacteriocin ST4SA recorded by real-time PCR. Int. J. Food Microbiol. 123, 277–280.CrossRefGoogle Scholar
  10. 10.
    Havenaar, R., Brink, B. T., Huis in’t Veld J. H. J. (1992) Selection of strains for probiotic use. In: Fuller, R. (ed.) Probiotics. Chapman and Hall, London, pp. 209–224.CrossRefGoogle Scholar
  11. 11.
    Hayaloglu, A. A., Kirbag, S. (2007) Microbial quality and presence of moulds in Kuflu cheese. Int. J. Food Microbiol. 115, 376–380.CrossRefGoogle Scholar
  12. 12.
    Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39–86.CrossRefGoogle Scholar
  13. 13.
    Lee, Y. K., Puong, K. Y., Ouwehand, A. C., Salminen, S. (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. M. Microbiol. 52, 925–930.CrossRefGoogle Scholar
  14. 14.
    Lin, W. H., Yu, B., Jang, S. H., Tsen, H. Y. (2007) Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe 13, 107–113.CrossRefGoogle Scholar
  15. 15.
    Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C. Kalantzopoulos, G., Pot, Tsakalidou E. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189–199.CrossRefGoogle Scholar
  16. 16.
    Millette, M., Dupont, C., Archambault, D., Lacroix, M. (2007) Partial characterization of bacteriocin produced by human Lactococcus lactis and Pediococcus acidilactici isolates. J. Appl. Microbiol. 102, 274–282.CrossRefGoogle Scholar
  17. 17.
    Oh, S., Kim, S. H., Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747–2752.CrossRefGoogle Scholar
  18. 18.
    Oksuztepe, G., Patir, B., Calicioglu, M. (2005) Identification and distribution of lactic acid bacteria during the ripening of Savak “Tulum” cheese. Turk. J. Vet. Anim. Sci. 29, 873–879.6Google Scholar
  19. 19.
    Oner, Z., Sağdıç, O., Şimşek, B. (2004) Lactic acid bacteria profiles and tyramine and tryptamine contents of Turkish “Tulum” cheeses. Eur. Food Res. Technol. 219, 455–459.CrossRefGoogle Scholar
  20. 20.
    Plant, L., Conway, P. (2001) Association of Lactobacillus spp. with Peyer’s in mice. Clin. Diagn. Lab. Immun. 8, 320–324.Google Scholar
  21. 21.
    Schägger, H. Von Jagow, G. (1987) Tricine-sodium dodecyl sulphate-poly-acrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.CrossRefGoogle Scholar
  22. 22.
    Singh, S., Goswami, P., Singh, R., Helen, K. J. (2009) Application of molecular identification of Lactobacillus with a focus on discrimination between closely related species: A review. LWT: Food Sci. Technol. 42, 448–457.CrossRefGoogle Scholar
  23. 23.
    Sung-Mee, L., Dong-Soon, I. (2009) Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19, 178–186.CrossRefGoogle Scholar
  24. 24.
    Todorov, S. D., Botes, M., Danova, S. T., Dicks, L. M. T. (2007) Probiotic properties of Lactococcus lactis ssp. lactis HV219, isolated from human vaginal segregations. J. Appl. Microbiol. 103, 629–639.CrossRefGoogle Scholar
  25. 25.
    van Belkum, M. J., Hayema, B. J., Geis, A., Kok, J., Venema, G. (1989) Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl. Environ. Microbiol. 55, 1187–1191.PubMedCentralGoogle Scholar
  26. 26.
    Wada, T., Meda, M., Kashiwabara, F., Jean, H. J., Shirakawa, A., Yabu, H., Matoba, Y., Kumagayi, T., Sugiyama, M. (2009) Characterization of four plasmids alboured in a Lactobacillus brevis strain encoding a novel bacteriocin brevicin925A, and construction a shuttle vector for lactic acid bacteria and Escherichia coli. Microbiology 155, 1726–1737.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceUniversity of AnkaraBesevler, AnkaraTurkey

Personalised recommendations