Advertisement

Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 77–94 | Cite as

Cylindrospermopsin Inhibits Growth and Modulates Protease Activity in the Aquatic Plants Lemna minor L. and Wolffia arrhiza (L.) Horkel

  • Katalin Jámbrik
  • C. Máthé
  • G. Vasas
  • I. Bácsi
  • G. Surányi
  • S. Gonda
  • G. Borbély
  • Márta M.-HamvasEmail author
Article

Abstract

The toxic effects of cylindrospermopsin (cyanobacterial toxin) on animals have been examined extensively, but little research has focused on their effects on plants. In this study cylindrospermopsin (CYN) caused alterations of growth, soluble protein content and protease enzyme activity were studied on two aquatic plants Lemna minor and Wolffia arrhiza in short-term (5 days) experiments. For the treatments we used CYN containing crude extracts of Aphanizomenon ovalisporum (BGSD-423) and purified CYN as well. The maximal inhibitory effects on fresh weight of L. minor and W. arrhiza caused by crude extract were 60% and 54%, respectively, while the maximum inhibitory effects were 30% and 43% in the case of purified CYN at 20 μg ml−1 CYN content of culture medium. In CYN-treated plants the concentration of soluble protein showed mild increases, especially in W. arrhiza. Protease isoenzyme activity gels showed significant alterations of enzyme activities under the influence of CYN. Several isoenzymes were far more active and new ones appeared in CYN-treated plants. Treatments with cyanobacterial crude extract caused stronger effects than the purified cyanobacterial toxins used in equivalent CYN concentrations.

Keywords

Aphanizomenon ovalisporum cylindrospermopsin protease Wolffia arrhiza Lemna minor 

Abbreviations

CYN

cylindrospermopsin

IC50

fifty percent inhibitory concentration

PMSF

phenylmethanesulfonyl fluoride, protease inhibitor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, M. M. (1968) Simple conditions for the growth of unicellular blue-green algae on plates. J. Phycol. 4, 1–4.CrossRefGoogle Scholar
  2. 2.
    Bajguz, A., Asami, T. (2005) Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66, 1787–1796.CrossRefGoogle Scholar
  3. 3.
    Banker, R., Carmeli, S., Hadas, O., Teltsch, B., Porat, R., Sukenik, A. (1997) Identication of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret, Israel. J. Phycol. 33, 613–616.CrossRefGoogle Scholar
  4. 4.
    Beyer, D., Surányi, G., Vasas, G., Roszik, J., Erdődi, F., M.-Hamvas, M., Bácsi, I., Bátori, R., Serfőző, Z., Szigeti, Z. M., Vereb, G., Demeter, Z., Gonda, S., Máthé, C. (2009) Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 54, 440–449.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72, 248–254.Google Scholar
  6. 6.
    Chong, M. W. K., Wong, P. K. S., Shaw, G. R., Seawright, A. A. (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxicon 40, 205–211.CrossRefGoogle Scholar
  7. 7.
    Falconer, I. R., Hardy, S. J., Humpage, A. R., Froscio, S. M., Tozer, G. J., Hawkins, P. R. (1999) Hepatic and renal toxicity of the blue-green alga (cyanobacterium) Cylindrospermopsis raciborskii in male Swiss albino mice. Environ. Toxicol. 14, 143–150.CrossRefGoogle Scholar
  8. 8.
    Froscio, S. M., Humpage, A. R., Burcham, P. C., Falconer, I. R. (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ. Toxicol. 18, 243–251.CrossRefGoogle Scholar
  9. 9.
    Horvat, T., Vidaković-Cifrek, Ž, Oreščanin, V., Tkalec, M., Pevalek-Kozlina, B. (2007) Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci. Total Environ. 384, 229–238.CrossRefGoogle Scholar
  10. 10.
    Huang, B., Zhang, G. (2000) Physiological and biochemical changes during seed filling in relation to leaf senescence in soybean. Biol. Plantarum 43, 545–548.CrossRefGoogle Scholar
  11. 11.
    Kinnear, S. H. W., Fabbro, L., Duivenvoorden, L. J. (2008) Variable growth responses of water thyme (Hydrilla verticillata) to whole-cell extracts of Cylindrospermopsis raciborskii. Arch. Environ. Contam. Toxicol. 54, 187–194.CrossRefGoogle Scholar
  12. 12.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  13. 13.
    Lakatos, G., Mészáros, I., Bohátka, S., Szabó, S., Makádi, M., Csatlós, M., Langer, G. (1993) Application of Lemna species in ecotoxicological studies of heavy metals. Sci. Total Environ. 44, 773–778.CrossRefGoogle Scholar
  14. 14.
    Metcalf, J. S., Barakate, A., Codd, G. A. (2004) Inhibition of plant protein synthesis by the cyanobacterialhepatotoxin, cylindrospermopsin. FEMS Microbiol. Letters 235, 125–129.CrossRefGoogle Scholar
  15. 15.
    M.-Hamvas, M., Máthe, Cs., Molnár, E., Vasas, G., Grigorszky, I., Borbély, Gy. (2003) Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat. Toxicol. 62, 1–9.CrossRefGoogle Scholar
  16. 16.
    Mitrovic, S. M., Allis, O., Furey, A., James, K. J. (2005) Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotox. Environ. Safe. 61, 345–352.CrossRefGoogle Scholar
  17. 17.
    Ohtani, I., Moore, R. E., Runnegar, M. T. C. (1992) Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 114, 7941–7942.CrossRefGoogle Scholar
  18. 18.
    Oláh, V., Combi, Zs., Szőllősi, E., Kanalas, P., Mészáros, I. (2009) Anthocyanins: possible antioxidants against Cr(VI) induced oxidative stress in Spirodela polyrrhiza. Cer. Res. Commun. 37, 533–536.Google Scholar
  19. 19.
    Padisák, J. (1997) Cylindrospermopsis raciborkii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hidrobiol./Suppl. 4, 563–593.Google Scholar
  20. 20.
    Pietsch, C., Wiegand, C., Amé, V. M., Nicklisch, A., Wunderlin, D., Pflugmacher, S. (2001) The effects of a cyanobacterial crude extraction different aquatic organisms: Evidence for cyanobacterial toxin modulating factors. Environ. Toxicol. 16, 535–542.CrossRefGoogle Scholar
  21. 21.
    Piotrowska, A., Bajguz, A., Godlewska-Žyłkiewicz, B., Czerpak, R., Kamińska, M. (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ. Exp. Bot. 66, 507–513.CrossRefGoogle Scholar
  22. 22.
    Preußel, K., Wessel, G., Fastner, J., Chorus, I. (2009) Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 8, 645–650.CrossRefGoogle Scholar
  23. 23.
    Rastogi, R. P., Sinha, R. P. (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27, 521–539.CrossRefGoogle Scholar
  24. 24.
    Reisner, M., Carmeli, S., Werman, M., Sukenik, A. (2004) The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice. Toxicol. Sci. 82, 620–627.CrossRefGoogle Scholar
  25. 25.
    Romanowska-Duda, Z., Tarczynska, M. (2002) The influence of microcystin-LR and hepatotoxic cyanobacterial extract on the water plant Spirodela oligorrhiza. Environ. Toxicol. 17, 434–440.CrossRefGoogle Scholar
  26. 26.
    Schlereth, A., Becker, C., Horstmann, C., Tiedemann, J., Müntz, K. (2000) Comparison of globulin mobilization and cysteine proteinases in embryogenic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51, 1423–1433.PubMedGoogle Scholar
  27. 27.
    Shaw, G. R., Sukenik, A., Livne, A., Chiswell, R. K., Smith, M. J., Seawright, A. A., Norris, R. L., Eaglesham, G. K., Moore, M. R. (1999) Blooms of the hepatotoxic cyanobacterium, Aphanizomenon ovalisporum (Forti) in newly constructed lakes, Queensland, Australia. Environ. Toxicol. 14, 167–177.CrossRefGoogle Scholar
  28. 28.
    Sivonen, K., Jones, G. (1999) In: Chorus, I., Bartman, J. (eds) Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management. E&FN Spon, London and New York, pp. 41–111.Google Scholar
  29. 29.
    Szabó, S., Braun, M., Balázsy, S., Reisinger, O. (1998) Influences of nine algal species isolated from duckweed-covered sewage miniponds on Lemna gibba L. Aquat. Bot. 60, 189–195.CrossRefGoogle Scholar
  30. 30.
    Terao, K., Ohmori, S., Igarashi, K., Ohtani, I., Watanabe, M. F., Harada, K. I., Ito, E., Watanabe, M. (1994) Electron-microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green-alga Umezakia natans. Toxicon 32, 833–843.CrossRefGoogle Scholar
  31. 31.
    Vasas, G., Gáspár, A., Páger, C., Surányi, G., Máthé, C., M.-Hamvas, M., Borbély, G. (2004) Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 25, 108–115.CrossRefGoogle Scholar
  32. 32.
    Vasas, G., Gáspár, A., Surányi, G., Batta, G., Gyémánt, G., M.-Hamvas, M., Máthé, C., Grigorszky, I., Molnár, E., Borbély, G. (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue–green Sinapis test). Anal. Biochem. 302, 95–103.CrossRefGoogle Scholar
  33. 33.
    Vierstra, R. D. (1996) Proteolysis in plants: mechanisms and functions. Plant Molecular Biology 32, 275–302.CrossRefGoogle Scholar
  34. 34.
    White, S. H., Duinvenvoorden, L. J., Fabbro, L. D. (2005) Absence of free-cylindrospermopsin bioconcentration in water thyme (Hydrilla verticillata). B. Environ. Contam. Tox. 75, 574–583.CrossRefGoogle Scholar
  35. 35.
    Wiegand, C., Pugmacher, S. (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol. Appl. Pharmacol. 203, 201–218.CrossRefGoogle Scholar
  36. 36.
    Woltering, E. J., van der Bent, A., Hoeberichts, F. A. (2002) Do plant caspases exist? Plant Physiol. 130, 1764–1769.CrossRefGoogle Scholar
  37. 37.
    Wormer, L., Cires, S., Carrasco, D., Quesada, A. (2008) Cylindrospermopsin is not degraded by cooccurring natural bacterial communities during a 40-day study. Harmful Algae 7, 206–213.CrossRefGoogle Scholar
  38. 38.
    Wormer, L., Huerta-Fontela, M., Cires, S., Carrasco, D., Quesada, A. (2010) Natural photodegradation of the Cyanobacterial toxins, microcystin and cylindrospermopsin. Environ. Sci. Technol. 44, 3002–3007.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Katalin Jámbrik
    • 1
  • C. Máthé
    • 1
  • G. Vasas
    • 1
  • I. Bácsi
    • 1
  • G. Surányi
    • 1
  • S. Gonda
    • 1
  • G. Borbély
    • 1
  • Márta M.-Hamvas
    • 1
    Email author
  1. 1.Department of Botany, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary

Personalised recommendations