Advertisement

Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 25–34 | Cite as

Screening of common Plantago species in Hungary for bioactive molecules and antioxidant activity

  • S. GondaEmail author
  • L. Tóth
  • P. Parizsa
  • M. Nyitrai
  • G. VasasEmail author
Article

Abstract

Five species of Plantago genus, namely P. lanceolata, P. major, P. media, P. altissima and P. maritima were screened for iridoid content (CE-MEKC), total caffeoyl phenylethanoid glycoside (CPG) content and antioxidant activity (CUPRAC assay). The five species could be distinguished by TLC pattern analysis in a single run in a system commonly used for quality management of P. lanceolata leaves, as shown by cluster analysis of major bands; with the exception, that P. altissima and P. lanceolata did not show enough pattern difference to be fully separated. P. maritima was shown to have the highest antioxidant capacity (0.42 μmol ascorbic acid equivalent (AAE)/g DW), and the highest level of CPGs (4.29%). P. altissima was shown to be chemically indistinguishable from P. lanceolata with repsect to iridoid content (aucubin 0.55 ± 0.04%, 0.68 ± 0.23%, catalpol 0.66 ± 0.13% and 0.89 ± 0.22%, respectively), CPG content (2.40 ± 0.38% and 2.54 ± 0.56%, respectively) and antioxidant capacity (0.2206 ± 0.0290 and 0.2428 ± 0.0191 μmol AAEAC/g DW). The presented data show the potency of medicinal use of Hungarian wild populations of the studied five species, especially in the case of P. maritima, and that P. altissima can be a potential replacement of P. lanceolata in herbal mixtures.

Keywords

Caffeoyl phenylethanoid glycoside capillary electrophoresis CUPRAC antioxidant capacity iridoid glycosides Plantago L. 

Abbreviations

AAEAC

ascorbic acid equivalent antioxidant capacity

AUC

aucubin

CAT

catalpol

CE-MEKC

capillary electrophoresis - micellar electrokinetic chromatography

CPG

caffeoyl phenylethanoid glycoside

CUPRAC

cupric reducing antioxidant capacity

DW

dry weight

IG

iridoid glycoside

NP

Natural Product reagent A

TLC

thin layer chromatography

TEAC

Trolox equivalent antioxidant capacity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apak, R., Güçlü, K., Demirata, B., Ozyürek, M., Celik, S. E., Bektaşoğlu, B., Berker K. I., Ozyurt, D. (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the cuprac assay. Molecules 12, 1496–1547.CrossRefGoogle Scholar
  2. 2.
    Apak, R., Güçlü, K., Ozyürek, M., Esin Karademir, S., Erçağ, E. (2006) The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 57, 292–304.CrossRefGoogle Scholar
  3. 3.
    Awang, D. V. (2009) Tyler’s Herbs of Choice: The Therapeutic Use of Phytomedicinals. Third edition. CRC Press, p. 84.CrossRefGoogle Scholar
  4. 4.
    Beara, I. N., Lesjak, M. M., Jovin, E. D., Balog, K. J., Anackov, G. T., Orcic, D. Z., Mimica-Dukic N. M. (2009) Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J. Agric. Food Chem. 57, 9268–9273.CrossRefGoogle Scholar
  5. 5.
    Beara, I. N. (2010) Phytochemical Screening and Evaluation of Antioxidant and Anti-inflammatory Potential of Secondary Metabolites of Plantago L. Species. PhD thesis, Novi Sad, University of Novi Sad, Serbia.Google Scholar
  6. 6.
    Biringanine, G., Chiarelli, M. T., Faes, M., Duez, P. (2006) A validation protocol for the hptlc standardization of herbal products: application to the determination of acteoside in leaves of Plantago palmata Hook. f.s. Talanta 69, 418–424.CrossRefGoogle Scholar
  7. 7.
    Chiou, W. F., Lin, L. C., Chen, C. F. (2004) Acteoside protects endothelial cells against free radicalinduced oxidative stress. J. Pharm. Pharmacol. 56, 743–748.CrossRefGoogle Scholar
  8. 8.
    Fleer, H., Verspohl, E. J. (2007) Antispasmodic activity of an extract from Plantago lanceolata L. and some isolated compounds. Phytomedicine 14, 409–415.CrossRefGoogle Scholar
  9. 9.
    Jin, L., Xue, H. Y., Jin, L. J., Li, S. Y., Xu, Y. P. (2008) Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582, 162–167.CrossRefGoogle Scholar
  10. 10.
    Jurisic, R., Debeljak, Z., Vladimir-Knezevic, S., Vukovic, J. (2004) Determination of aucubin and catalpol in Plantago species by micellar electrokinetic chromatography. Z. Naturforsch. 59, 27–31.CrossRefGoogle Scholar
  11. 11.
    R. Development Core Team (2009) R: A Language and Environment for Statistical Computing. Vienna, Austria. Site: http://www.R-project.orgGoogle Scholar
  12. 12.
    Ronsted, N., Franzyk, H., Molgaard, P., Jaroszewski, J. W., Jensen, S. R. (2003) Chemotaxonomy and evolution of Plantago L. Plant Syst. Evol. 242, 63–82.CrossRefGoogle Scholar
  13. 13.
    Samuelsen, A. B. (2000) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 71, 1–21.CrossRefGoogle Scholar
  14. 14.
    Senatore, F., Rigano, D., Formisano, C., Grassia, A., Basile, A., Sorbo, S. (2007) Phytogrowthinhibitory and antibacterial activity of Verbascum sinuatum. Fitoterapia 78, 244–247.CrossRefGoogle Scholar
  15. 15.
    Sherma, J., Fried, B. (2003) Handbook of Thin-layer Chromatography. CRC Press, pp. 719–720.CrossRefGoogle Scholar
  16. 16.
    Shim, K. M., Choi, S. H., Jeong, M. J., Kang, S. S. (2007) Effects of aucubin on the healing of oral wounds. In Vivo 21, 1037–1041.PubMedGoogle Scholar
  17. 17.
    Suomi, J., Siren, H., Hartonen, K., Riekkola, M. L. (2000) Extraction of iridoid glycosides and their determination by micellar electrokinetic capillary chromatography. J. Chromatogr. 868, 73–83.CrossRefGoogle Scholar
  18. 18.
    Xue, H. Y., Jin, L., Jin, L. J., Li, X. Y., Zhang, P., Ma, Y. S., Lu Y. N., Xia Y. Q., Xu Y. P. (2009) Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytother. Res. 23, 980–986.CrossRefGoogle Scholar
  19. 19.
    Yıldız, L., Başkan, K. S., Tütem, E., Apak, R. (2008) Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta 77, 304–313.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Botany, Division of PharmacognosyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Pharmacognosy, Faculty of PharmacyUniversity of SzegedSzegedHungary

Personalised recommendations