Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 206–217 | Cite as

Biotechnological Approach in Exploring Vegetative Desiccation Tolerance: From Aseptic Culture to Molecular Breeding

  • O. ToldiEmail author
  • G. Dancs
  • Sz. Dobrányi
  • Cs. Gyuricza
  • Zs. Gémesi
  • P. Scott
Open Access


What is remarkable about resurrection plants is the ability of vegetative tissues (root, shoot, stem, leaves) to tolerate dehydration of the tissues and then return as functional units on rehydration. This phenomenon made resurrection plants exciting targets for molecular analysis of the poikilohydric ability and drought tolerance. The protective mechanisms of vegetative desiccation tolerance appear to involve three major components, sugars, proteins and antioxidants. According to the recent scientific consensus all three are postulated to be involved in maintaining cellular integrity during the drying phases. The aim of this review is to establish a provisional hierarchy among these stress avoiding mechanisms that are associated with desiccation tolerance. The main reason for ranking these signal metabolites and protective agents is their potential importance in practical applications. Although vegetative desiccation tolerance is a complex trait both genetically and physiologically, there are already examples where outcomes of targeted studies in resurrection plants are going to be directly utilized to engineer crop plants genetically. Here we also show that conventional genetic transformation techniques, via in vitro plant regeneration systems, still represent an unavoidable part of the high-throughput technology chain of molecular breeding.


ABA glutathione (GSH) LEA proteins raffinose family oligosaccharides (RFOs) resurrection plants 


  1. 1.
    Bae, H., Herman, E., Bailey, B., Bae, H. J., Sicher, R. (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol. Plant. 125, 114–126.Google Scholar
  2. 2.
    Baier, M., Dietz, K. J. (1997) The plant 2-cys peroxiredoxin BAS1 is a nuclear encoded chloroplast protein: its expression regulation, phylogenetic origin and implications for its specific physiological function in plants. Plant J. 12, 179–190PubMedGoogle Scholar
  3. 3.
    Bartels, D., Salamini, F. (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum: a contribution to the study of drought tolerance at the molecular level. Plant Physiol. 127, 1346–1353.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bent, A. F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Buitink, J., Leprince, O. (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48, 215–228.PubMedGoogle Scholar
  6. 6.
    Chakrabortee, S., Boschetti, C., Walton, L. J., Sarkar, S., Rubinsztein, D. C., Tunnacliffe, A. (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc. Natl. Acad. Sci. USA 104, 18073–18078.PubMedGoogle Scholar
  7. 7.
    Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolf, A. S., Wistrom, C. A., Spargo, B. J., Anchordoguy, T. J. (1988) Interaction of sugars with membranes. Biochimica et Biophysica Acta 947, 367–384.PubMedGoogle Scholar
  8. 8.
    Cuming, A. (1999) LEA proteins. In: Shewry, P. R., Casey, R. (eds) Seed Proteins. Kluwer Academic Publishers, Dordecht, The Netherlands, pp. 753–780.Google Scholar
  9. 9.
    Cushman, M. A., Bufford, D., Fredrickson, M., Ray, A., Akselrod, I., Landrith, D., Stout, L., Maroco, J., Cushman, J. (1999) An expressed sequence tag (EST) database for the common ice plant Mesembryanthemum crystallinum. Plant Physiol. 120S, 145.Google Scholar
  10. 10.
    Daskalova, E., Dontcheva, S., Yahubyan, G., Minkov, I., Toneva, V. (2010) Ecological characteristics and conservation of the protected resurrection species Haberlea rhodopensis Friv. as in vitro plants through a modified micropropagation system. Biotechnol. & Biotechnol. Eq. 24, 213–217.Google Scholar
  11. 11.
    Djilianov, D., Genova, G., Parvanova, D., Zapryanova, N., Konstantinova, T., Atanasov, A. (2005) In vitro culture of the resurrection plant Haberlea rhodopensis. Plant Cell Tissue Organ Cult. 80, 115–118.Google Scholar
  12. 12.
    Djilianov, D., Ivanov, S., Georgieva, T., Moyankova, D., Berkov, S., Petrova, G., Mladenov, P., Christov, N., Hristozova, N., Preshev, D., Tchorbadjieva, M., Alexieva, V., Tosheva, A., Nikolova, M., Ionkova, I., van den Ende, W. (2009) A holistic approach to resurrection plants. Haberlea rhodopensis–a case study. Biotechnol. & Biotechnol. Eq. 23, 1414–1416.Google Scholar
  13. 13.
    Dontcheva, S., Daskalova, E., Yahubyan, G., Denev, I., Minkov, I., Toneva, V. (2009) Conservation of the protected resurrection species Ramonda serbica Panč.–habitat montana district, Bulgaria as in vitro plants through a modified micropropagation system. Biotechnol. & Biotechnol. Eq. 23, 369–372.Google Scholar
  14. 14.
    Fiehn, O. (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171.PubMedGoogle Scholar
  15. 15.
    Furini, A., Koncz, C., Salamini, F., Bartels, D. (1994) Agrobacterium-mediated transformation of the desiccation-tolerant plant Craterostigma plantagineum. Plant Cell Rep. 14, 102–106.PubMedGoogle Scholar
  16. 16.
    Goddijn, O. J. M., Verwoerd, T. C., Voogd, E., Krutwagen, R. W. H. H., de Graaf, P. T. H. M., Poels, J., van Dun, K., Ponstein, A. S., Damm, B., Pen, J. (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 113, 181–190.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Goyal, K., Walton, L. J., Tunnacliffe, A. (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388, 151–157.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Grill, E., Löffler, S., Winnacker, E. L., Zenk, M. H. (1989) Phytocelatins, the heavy-metal binding peptides of plants, are synthetised from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytocelatin synthase). Proc. Natl. Acad. Sci. USA 86, 6838–6842.PubMedGoogle Scholar
  19. 19.
    Gygi, S. P., Rochon, S. Y., Franza, B. R., Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 19, 1720–1730.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hoekstra, F. A., Wolkers, W. F., Buitink, J., Golovina, E. A., Crowe, J. H., Crowe, L. M. (1997) Membrane stabilization in the dry state. Comp. Biochem. Phys. 117A, 335–341.Google Scholar
  21. 21.
    Ishianti, M., Xiong, I., Stevenson, B., Zhu, J. K. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949.Google Scholar
  22. 22.
    Iturriaga, G., Cushman, M. A. F., Cushman, J. C. (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci. 170, 1173–1184.Google Scholar
  23. 23.
    Jiang, G., Wang, Z., Shang, H., Yang, W., Hu, Z., Phillips, J., Deng, X. (2007) Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225, 1405–1420.PubMedGoogle Scholar
  24. 24.
    Kranner, I., Beckett, R. P., Wornik, S., Zorn, M., Pfeifhofer, H. W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31, 13–24.PubMedGoogle Scholar
  25. 25.
    Lappartient, A. G., Touraine, B. (1996) Demand-driven control of root ATP sulfurylase activity and sulfate uptake in intact Canola. Plant Physiol. 111, 147–157.PubMedPubMedCentralGoogle Scholar
  26. 26.
    LePrince, O., Hendry, G. A. F., McKersie, B. D. (1993) The mechanism of desiccation tolerance in developing seeds. Seed Science Research 3, 231–246.Google Scholar
  27. 27.
    Liu, Y. B., Wang, G., Liu, J., Zhao, X., Tan, H. J., Li, X. R. (2007) Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration. Journal of Arid Environments 70, 183–194.Google Scholar
  28. 28.
    Marschall, M., Proctor, M. C. F., Smirnoff, N. (1998) Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New Phytologist 138, 343–353.Google Scholar
  29. 29.
    Moore, J. P., Westall, K. L., Ravenscroft, N., Farrant, J. M., Lindsey, G. G., Brandt, W. F. (2005) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem. J. 385, 301–308.PubMedGoogle Scholar
  30. 30.
    Moore, J. P., Le, N. T., Brandt, W., Driouich, A., Farrant, J. (2009) Towards a system-based understanding of plant desiccation tolerance. Trends Plant Sci. 14, 112–117.Google Scholar
  31. 31.
    Mundree, S. G., Whittaker, A., Thomson, J. A., Farrant, J. M. (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta 211, 693–700.PubMedGoogle Scholar
  32. 32.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.Google Scholar
  33. 33.
    Noctor, G., Arisi, A. C. M., Jouanin, L., Kunert, K. J., Rennenberg, H., Foyer, C. H. (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49, 623–647.Google Scholar
  34. 34.
    Norwood, M., Toldi, O., Richter, A., Scott, P. (2003) Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress. J. Exp. Bot. 54, 2313–2321.PubMedGoogle Scholar
  35. 35.
    Oliver, M. J., Tuba, Z., Mishler, B. D. (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol. 151, 85–100.Google Scholar
  36. 36.
    Păcurar, D. I. (2009) Model organisms–a journey from the dawn of biological research to the postgenomic era. Romanian Biotechnological Letters 14, 4087–4094.Google Scholar
  37. 37.
    Peterbauer, T., Mucha, J., Mach, L., Richter, A. (2002) Chain elongation of raffinose in pea seeds–isolation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J. Biol. Chem. 277, 194–200.PubMedGoogle Scholar
  38. 38.
    Peters, S., Mundree, S. G., Thomson, J. A., Farrant, J. M., Keller, F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose familiy oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot. 58, 1947–1956.PubMedGoogle Scholar
  39. 39.
    Sabovljevic, A., Sabovljevic, M., Rakic T., Stevanovic, B. (2008) Establishment of procedures for in vitro maintenance, plant regeneration, and protoplast transfection of the resurrection plant Ramonda serbica. Belg. J. Bot. 141, 178–184Google Scholar
  40. 40.
    Schiraldi, C., Di Lernia, I., De Rosa, M. (2002) Trehalose production: exploiting novel approaches. Trends Biotech. 20, 420–425.Google Scholar
  41. 41.
    Smith-Espinoza, C., Bartels, D., Phillips, J. (2007) Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens. Plant Cell Rep. 26, 1681–1688.PubMedGoogle Scholar
  42. 42.
    Suzuki, T., Imamura, K., Yamamoto, K., Satoh, K., Okazaki, M. (1997) Thermal stabilisation of freeze-dried enzymes by sugars. J. Chem. Eng. Jpn. 30, 609–613.Google Scholar
  43. 43.
    Tausz, M., Šircelj, H., Grill, D. (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot. 55, 1955–1962.PubMedGoogle Scholar
  44. 44.
    Toldi, O., Norwood, M., Tóth, S., Scott, P. (2000) The susceptibility to Agrobacterium-mediated transformation in the desiccation-tolerant plant Craterostigma plantagineum is determined by in vitro preinduction of vir genes of the bacterial Ti plasmid. Plant Physiology and Biochemistry 38S, 97.Google Scholar
  45. 45.
    Toldi, O., Tóth, S., Ponyi, T., Scott, P. (2002) An effective and reproducible transformation protocol for the model resurrection plant Craterostigma plantagineum Hochst. Plant Cell Rep. 21, 63–69.Google Scholar
  46. 46.
    Toldi, O., Djilianov, D., Scott, P. (2006) Transgenic Approach for Functional Analysis of Genes Associated with Desiccation Tolerance in Resurrection Plants. In: Teixeira da Silva, J. A. (ed.) Floriculture, Ornamental and Plant Biotechnology. Vol. III. Global Science Book, UK, pp. 209–217.Google Scholar
  47. 47.
    Toldi, O., Tuba, Z., Scott, P. (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci. 176, 187–199.Google Scholar
  48. 48.
    Toldi, O., Tuba, Z., Scott, P. (2010) Can lessons learned from resurrection plants extended over crop plant species? Romanian Biotechnological Letters 15, 3–11.Google Scholar
  49. 49.
    Tóth, S., Scott, P., Sorvari, S., Toldi, O. (2004) Effective and reproducible protocols for in vitro culturing and plant regeneration of the physiological model plant Ramonda myconi (L.) Rchb. Plant Sci. 166, 1027–1034.Google Scholar
  50. 50.
    Tóth, S., Kiss, C., Scott, P., Kovács, G., Sorvari, S., Toldi, O. (2006) Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell Rep. 25, 442–449.PubMedGoogle Scholar
  51. 51.
    Voinnet, O. V., Pinto, Y. M., Baulcombe, D. C. (1999) Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96, 14147–14152.PubMedGoogle Scholar
  52. 52.
    Watson, B. S., Asirvatham, V. S., Wang, L., Sumner, L. W. (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol. 131, 1104–1123.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wise, M. J., Tunnacliffe, A. (2004) POPP the question: what do LEA proteins do? Trends Plant Sci. 9, 13–17.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • O. Toldi
    • 1
    Email author
  • G. Dancs
    • 1
  • Sz. Dobrányi
    • 1
    • 2
  • Cs. Gyuricza
    • 3
  • Zs. Gémesi
    • 4
  • P. Scott
    • 5
  1. 1.Department of Biomass ExploitationHungarian Institute of Agricultural EngineeringGödöllőHungary
  2. 2.Department of Botany and Plant PhysiologySzent István UniversityGödöllőHungary
  3. 3.Institute of Crop ProductionSzent István UniversityGödöllőHungary
  4. 4.Regional Developmental Holding Co. Ltd.BudapestHungary
  5. 5.School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations