Advertisement

Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 109–119 | Cite as

The Role of Seed Bank in the Dynamics of Understorey in an Oak Forest in Hungary

  • G. KonczEmail author
  • Mária Papp
  • P. Török
  • Zs. Kotroczó
  • Zs. Krakomperger
  • G. Matus
  • B. Tóthmérész
Article

Abstract

We studied the potential role of seed bank in the dynamics of the understorey in a turkey oak-sessile oak forest (Querceteum petraeae-cerris) in Hungary. We used long-term records of the herb layer (1973–2006) and the seed bank composition of 2006 to assess the role of seed bank in the regeneration of herb layer. The total cover of herb layer decreased from 22% (1973) to 6% (1988), and remained low (<10%) till 2006; coinciding with the increasing cover of secondary canopy dominated by Acer campestre. We found a low density seed bank (ca. 1300 seeds/m2). Altogether 33 species were germinated from the soil samples. A few generalist weed species composed the majority of seed bank. It was possible to assign a seed bank type for 19 species; 14 species out of 19 was long-term persistent. We found that the characteristic perennial forest herbs and grasses had only sparse seed bank. The Jaccard similarity between vegetation and seed bank was low (<30%). Our results suggest that the continuous establishment of forest herbs are not based on local persistent seed bank; it should be based on vegetative spreading and/or seed rain.

Keywords

Forest decay herb species seed density seed persistence seedling emergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aude, E., Lawesson, J. E. (1998) Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecol. 134, 53–65.Google Scholar
  2. 2.
    Bhuju, D. R., Ohsawa, M. (2001) Patch implications in the maintenance of species richness in an isolated forest site. Biol. Conserv. 98, 117–125.Google Scholar
  3. 3.
    Borhidi, A. (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica 39, 97–181.Google Scholar
  4. 4.
    Bossuyt, B., Hermy, M. (2001) Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24, 225–238.Google Scholar
  5. 5.
    Bossuyt, B., Heyn, M., Hermy, M. (2002) Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecol. 162, 33–48.Google Scholar
  6. 6.
    Bossuyt, B., Honnay, O. (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19, 875–884.Google Scholar
  7. 7.
    Canham, C. D., Marks, P. L. (1985) The response of woody plants to disturbance, patterns of establishment and growth. In: Pickett, S. T. A., White, P. S. (eds) The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York, pp. 197–216.Google Scholar
  8. 8.
    Chang, E. R., Jefferies, R. L., Carleton, T. J. (2001) Relationship between vegetation and soil seed banks in an arctic coastal marsh. J. Ecol. 89, 367–384.Google Scholar
  9. 9.
    Cook, R. (1980) The biology of seeds in the soil. In: Solbrig, O. T. (ed.) Demography and Evolution of Plant Populations. University of California Press, Berkely, pp. 107–129.Google Scholar
  10. 10.
    Csapody, V. (1968) Keimlingsbestimmungsbuch der Dicotyledonen. Akadémiai Kiadó, Budapest.Google Scholar
  11. 11.
    Csontos, P. (2007) Seed banks: ecological definitions and sampling considerations. Community Ecol. 8, 75–85.Google Scholar
  12. 12.
    Decocq, G., Valentin, B., Toussaint, B., Hendoux, F., Saguez, R., Bardat, J. (2004) Soil seed bank composition and diversity in a managed temperate deciduous forest. Biodivers. Conserv. 13, 2485–2509.Google Scholar
  13. 13.
    Drake, D. R. (1998) Relationships among the seed rain, seed bank and vegetation of a Hawaiian forest. J. Veg. Sci. 9, 815–828.Google Scholar
  14. 14.
    Eriksson, O. (1989) Seedling dynamics and life histories in clonal plants. Oikos 55, 231–238.Google Scholar
  15. 15.
    Eriksson, O. (1993) Dynamics of genets in clonal plants. Trends Ecol. Evol. 8, 313–316.PubMedGoogle Scholar
  16. 16.
    Forester, E. (1956) Ein Beitrag zur Kenntnis der Selbstverjüngung von Dauerweiden. Zeitschrift für Acker- und Pflanzenbau 100, 273–301.Google Scholar
  17. 17.
    Frelich, L. E. (2002) Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. Cambridge University Press, Cambridge.Google Scholar
  18. 18.
    Gashaw, M., Michelsen, A., Jensen, M., Friis, I. (2002) Soil seed banks dynamics of fire-prone wooded grassland, woodland and dry forest ecosystems in Ethiopia. Nord. J. Bot. 22, 5–17.Google Scholar
  19. 19.
    Godefroid, S., Phartyal, S. S., Koedam, N. (2006) Depth distribution and composition of seed banks under different tree layers in a managed temperate forest ecosystem. Acta Oecol. 29, 283–297.Google Scholar
  20. 20.
    Grime, J. P. (1989) Seed banks in ecological perspective. In: Leck, M. A., Parker, V. T., Simpson, R. L. (eds) Ecology of Soil Seed Banks. Academic Press, Inc., London, pp. 15–22.Google Scholar
  21. 21.
    Grubb, P. J. (1988) The uncoupling of disturbance and recruitment, two kinds of seed bank and persistence of plant populations at the regional and local scales. Ann. Zool. Fenn. 25, 23–26.Google Scholar
  22. 22.
    Halpern, C. B., Evans, S. A., Nielson, S. (1999) Soil seed banks in young closed-canopy forests of the Olympic Peninsula, Washington: potential contributions to understory reinitiation. Can. J. Bot. 77, 922–935.Google Scholar
  23. 23.
    Harper, J. L. (1977) Population Biology of Plants. London, Academic Press.Google Scholar
  24. 24.
    Hopfensperger, K. (2007) A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116, 1438–1448.Google Scholar
  25. 25.
    Jakucs, P. (1985) Results of “Síkfőkút Project”. Akadémiai Kiadó, Budapest.Google Scholar
  26. 26.
    Jakucs, P., Mészáros, I., Papp, B. L., Tóth, J. A. (1986) Acidification of soil and decay of sessile oak in the “Sikfőkút Project” area (N-Hungary). Acta Bot. Hung. 32, 303–322.Google Scholar
  27. 27.
    Kalamees, R., Zobel, M. (1998) Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia. Acta Oecol. 19, 175–180.Google Scholar
  28. 28.
    Kawano, S. (1975) The productive and reproductive Biology of Flowering plants. II. The concept of Life History Strategy in plants. J. College of Libertal Arts 8, 51–86.Google Scholar
  29. 29.
    Kjellsson, G. (1992) Seed bank sin Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography 15, 86–100.Google Scholar
  30. 30.
    Kotroczó, Zs., Fekete, I., Tóth, J. A., Tóthmérész, B., Balázsy, S. (2008) Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soil. Cereal Res. Commun. 36 (Suppl.), 663–666.Google Scholar
  31. 31.
    Krakomperger, Zs., Tóth, J. A., Varga, Cs., Tóthmérész, B. (2008) The effect of litter input on soil enzyme activity in an oak forest. Cereal Res. Commun. 36 (Suppl.), 322–326.Google Scholar
  32. 32.
    Leary, C. I., Howes-Keiffer, C. (2004) Comparison of standing vegetation and seed bank composition one year following hardwood reforestation in south-western Ohio. Ohio J. Sci. 104, 20–28.Google Scholar
  33. 33.
    Leck, C. F. (1998) A ten-year seed bank study of old field succession in central New Jersey. J. Torrey Bot. Soc. 125, 11–32.Google Scholar
  34. 34.
    Leckie, S., Vellend, M., Bell, G., Waterway, M. J., Lechowicz, M. J. (2000) The seed bank in an oldgrowth, temperate deciduous forest. Can. J. Bot. 78, 181–192.Google Scholar
  35. 35.
    Legendre, P., Legendre, L. (1998) Numerical Ecology. Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  36. 36.
    Matlaga, D. P., Horvitz, C. C. (2009) Growth and survival across a gap-understory gradient: contrast in performance of sexually vs. clonally produced offspring. Am. J. Bot. 96, 439–447.PubMedGoogle Scholar
  37. 37.
    Matus, G., Tóthmérész, B., Papp, M. (2003) Restoration prospects of abandoned species-rich sandy grassland in Hungary. Appl. Veg. Sci. 6, 169–178.Google Scholar
  38. 38.
    Matus, G., Papp, M., Tóthmérész, B. (2005) Impact of management change on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora 200, 296–306.Google Scholar
  39. 39.
    Mészáros, I., Módy, I., Marschall, M. (1993) Effect of air pollution on the condition of sessile oak forests in Hungary. In: Vernet, J.-P. (ed.) Environmental Contamination. Studies in Environmental Science 55. Elsevier Sci. Publ., Amsterdam, pp. 23–35.Google Scholar
  40. 40.
    Mészáros, I., Veres, Sz., Kanalas, P., Oláh, V., Szőllősi, E., Sárvári, É., Lévai, É., Lakatos, Gy. (2007) Leaf growth and photosynthetic performance of two co-existing oak species in contrasting growing seasons. Acta Silv. Lign. Hung. 3, 7–20.Google Scholar
  41. 41.
    Milberg, P. (1995) Soil seed bank after eighteen years of succession from grassland to forest. Oikos 72, 3–13.Google Scholar
  42. 42.
    Mitlacher, K., Poschlod, P., Rosén, E., Bakker, J. P. (2002) Restoration of wooded meadows–a comparative analysis along a chronosequence on Öland Sweden. J. Veg. Sci. 5, 63–73.Google Scholar
  43. 43.
    Numata, M. (1979) Facts, causal analyses, and theoretical considerations on plant succession. Vegetation und Landschaft Japans 16, 71–91.Google Scholar
  44. 44.
    Pakeman, R. J., Small, J. L. (2005) The role of the seed bank, seed rain and the timing of disturbance in gap generation. J. Veg. Sci. 16, 121–130.Google Scholar
  45. 45.
    Peterson, C. J., Carson, W. P. (1996) Generalizing forest regeneration models: the dependence of propagule availability on disturbance history and stand size. Can. J. Forest Res. 26, 45–52.Google Scholar
  46. 46.
    Pickett, S. T. A., McDonnell, M. J. (1989) Seed bank dynamics in temperate deciduous forest. In: Leck, M. A., Parker, V. T., Simpson, R. L. (eds) Ecology of Soil Seed Banks. Academic Press, Inc., London, pp. 123–145.Google Scholar
  47. 47.
    Priestly, D. A. (1986) Seed Aging: Implications for Seed Storage and Persistence in the Soil. Cornel University Press, Ithaca, N.Y.Google Scholar
  48. 48.
    Schiffman P., Johnson, W. C. (1992) Sparse buried seed bank in a Southern Appalachian oak forest: Implication for succession. Am. Midl. Nat. 127, 258–267.Google Scholar
  49. 49.
    Sokal, R. R., Rohlf, F. J. (1995) Biometry. Freeman, New York, USA.Google Scholar
  50. 50.
    Staaf, H., Jonsson, M., Olsen, L. G. (1987) Buried germinative seeds in mature beech forests with different herbaceous vegetation and soil types. Holarctic Ecology 10, 268–277.Google Scholar
  51. 51.
    Sullivan, K. A., Ellison, A. M. (2006) The seed bank of hemlock forests: implications for forest regeneration following hemlock decline. J. Torrey Bot. Soc. 133, 393–402.Google Scholar
  52. 52.
    Templeton, A. R., Levin, D. A. (1979) Evolutionary consequence of seed pools. Am. Nat. 114, 232–249.Google Scholar
  53. 53.
    ter Heerdt, G. N. J., Verweij, G. L., Bekker, R. M., Bakker, J. P. (1996) An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10, 144–151.Google Scholar
  54. 54.
    Thompson, K., Grime, J. P. (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921.Google Scholar
  55. 55.
    Thompson, K. (1992) The functional ecology of seed banks. In: Fenner, M. (ed.) Seeds: The Ecology of Regeneration in Plant Communities. CAB International, Wallingford, UK, pp. 231–258.Google Scholar
  56. 56.
    Thompson, K., Bakker, J. P., Bekker, R. M. (1997) The Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge, UK.Google Scholar
  57. 57.
    Török, P., Deák, B., Vida, E., Valkó, O., Lengyel, S., Tóthmérész, B. (2010) Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 143, 806–812.Google Scholar
  58. 58.
    Turner, M. G. (1989) Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Evol. S. 20, 171–197.Google Scholar
  59. 59.
    Valkó, O., Török, P., Matus, G., Tóthmérész, B. (2010) Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: can restoration be based on local seed banks? Restor. Ecol. doi: 10.1111/j.1526-100X.2010.00679.xGoogle Scholar
  60. 60.
    Warr, J. S., Kent, M., Thompson, K. (1994) Seed bank composition and variability in five woodlands in southwest England. J. Biogeog. 21, 151–168.Google Scholar
  61. 61.
    Zar, J. H. (1999) Biostatistical Analysis. Prentice & Hall, Upper Saddle River, New Jersey.Google Scholar
  62. 62.
    Zobel, M., Kalamees, R., Püssa, K., Roosaluste, E., Moora, M. (2007) Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest Ecol. Manag. 250, 71–76.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Koncz
    • 1
    • 2
    Email author
  • Mária Papp
    • 1
  • P. Török
    • 2
  • Zs. Kotroczó
    • 3
  • Zs. Krakomperger
    • 2
  • G. Matus
    • 1
  • B. Tóthmérész
    • 2
  1. 1.Department of BotanyUniversity of DebrecenDebrecenHungary
  2. 2.Department of EcologyUniversity of DebrecenDebrecenHungary
  3. 3.Biological InstituteCollege of NyíregyházaNyíregyházaHungary

Personalised recommendations