Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 4, pp 391–400 | Cite as

Does Breeding Status Influence Haematology and Blood Biochemistry of Yellow-Legged Gulls?

  • Maria T. Antonio GarciaEmail author
  • Y. Hermosa
  • J. I. Aguirre
Article

Abstract

We compared the haematological and biochemical values within a population of yellow-legged gulls (Larus michahellis) in the Chafarinas Islands (Northern Africa), in non-breeding (February) and breeding (May) animals. We collected blood samples from 51 adults. We found that according to the haematological data, there was a significant variation in haemoglobin content, and a higher proportion of heterophils, thrombocytes, and Haemoproteus infection in breeding individuals with a lower level in basophils. Blood biochemistry showed a higher level in plasmatic proteins, calcium, phosphorus, thiobarbituric acid-reactive substances and alkaline phosphatase as well as alanine aminotransferase activity in breeding animals while cholesterol and phospholipid levels showed a lower level. There was also a sexual difference in triglycerides, albumin, thiobarbituric acid-reactive substances and alkaline phosphatase activity. Hence, the haematological and blood chemistry values of yellow-legged gulls showed some differences between breeding and non-breeding individuals as well as between sexes.

Keywords

Haematology blood biochemistry yellow-legged gulls breeding condition sex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilera, E., Moreno, J., Ferrer, M. (1993) Blood chemistry values in three Pygoscelis penguins. Comp. Biochem. Physiol. 105, 471–473.CrossRefGoogle Scholar
  2. 2.
    Alonso-Alvarez, C., Ferrer, M. (2001) A biochemical study of fasting, subfeeding, and recovery processes in yellow-legged gulls. Physiol. Biochem. Zool. 74, 703–713.CrossRefGoogle Scholar
  3. 3.
    Alonso-Alvarez, C. (2005) Age-dependent changes in plasma biochemistry of yellow-legged gulls (Larus cachinnans). Comp. Biochem. Physiol. 140, 512–518.CrossRefGoogle Scholar
  4. 4.
    Alonso-Alvarez, C., Ferrer, M., Velando, A. (2002) The plasmatic index of body condition in yellow-legged Gulls (Larus cachinnans): a food-controlled experiment. Ibis 144, 147–150.CrossRefGoogle Scholar
  5. 5.
    Alonso-Alvarez, C., Perez, C., Velando, A. (2007) Effects of acute exposure to heavy fuel oil from Prestige spill on a seabird. Aquat. Toxicol. 84, 103–110.CrossRefGoogle Scholar
  6. 6.
    Averbeck, C. (1992) Haematology and blood chemistry of healthy and clinically abnormal great black-backed Gulls (Larus marinus) and herring gulls (Larus argentatus). Avian Pathol. 21, 215–223.CrossRefGoogle Scholar
  7. 7.
    Bertram, E. M. (1998) Characterization of duck thrombocytes. Res. Vet. Sci. 64, 267–270.CrossRefGoogle Scholar
  8. 8.
    Campbell, T. W. (1988) Avian Hematology and Citology. University Press, Ames Iowa State.Google Scholar
  9. 9.
    Carlson, H. C., Sweeney, P. R., Tokaryk, J. M. (1968) Demonstration of phagocytic and trephocytic activities of chicken thrombocytes by microscopy and vital staining techniques. Avian Dis. 12, 700–715.CrossRefGoogle Scholar
  10. 10.
    Claver, J. A. (2005) El trombocito aviar. In. Vet. 7, 139–146.Google Scholar
  11. 11.
    Da Matta, R. A., Seabra, S. H., De Souza, W. (1998) Further studies on the phagocytic capacity of chicken thrombocytes. J. Submicrosc. Cytol. Pathol. 30, 271–277.Google Scholar
  12. 12.
    Dawson, A. (2000) Mechanisms of endocrine disruption with particular reference to occurrence in avian wildlife: A review. Ecotoxicology 9, 59–69.CrossRefGoogle Scholar
  13. 13.
    De le Court, C., Aguilera, E., Recio, F. (1995) Plasma chemistry values of free-living white spoonbills (Platalea leucorodia). Comp. Biochem. Physiol. 112, 137–141.CrossRefGoogle Scholar
  14. 14.
    Deerenberg, C., Apanius, V., Daan, S., Bos, N. (1997) Reproductive effort decreases antibody responsiveness. Proc. R. Soc. 264, 1021–1029.CrossRefGoogle Scholar
  15. 15.
    Edwards, D. B., Mallory, M. L., Forbes, M. R. (2006) Variation in baseline haematology of northern fulmars (Fulmarus glacialis) in the Canadian High Arctic. Comp. Clin. Pathol. 14, 206–209.CrossRefGoogle Scholar
  16. 16.
    Fair, J., Whitaker, S., Pearson, B. (2007) Sources of variation in haematocrit in birds. Ibis 149, 535–552.CrossRefGoogle Scholar
  17. 17.
    Gee, G. F., Carpenter, J. W., Hensler, B. L. (1981) Species differences in haematological values of captive cranes, geese, raptors and quail. J. Wildlife Manage 45, 463–483.CrossRefGoogle Scholar
  18. 18.
    Ghebremeskel, K., Williams, T. D., Williams, G., Gardner, D. A., Crawford, M. A. (1992) Dynamics of plasma nutrients and metabolites in moulting macaroni (Eudyptes chrysolophus) and gentoo (Pygoscelis papua) penguins. Comp. Biochem. Physiol. 101, 301–307.CrossRefGoogle Scholar
  19. 19.
    Glick, B., Sato, K., Cohenour, F. (1964) Comparison of the phagocytic ability of normal and bursec-tomized birds. J. Reticuloendothel. Soc. 1, 442–449.PubMedGoogle Scholar
  20. 20.
    Gross, W. B., Siegel, H. S. (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 27, 972–979.CrossRefGoogle Scholar
  21. 21.
    Hazelhood, R. L. (1986) Carbohydrate metabolism. In: Sturkie, P. D. (ed.) Avian Physiology. Springer Verlag, New York, pp. 303–325.CrossRefGoogle Scholar
  22. 22.
    Jeffrey, D. A., Peakall, D. B., Miller, D. S., Herzberg, G. R. (1985) Blood chemistry changes in food-deprived herring gulls. Comp. Biochem. Physiol. 81, 911–913.CrossRefGoogle Scholar
  23. 23.
    Johnson, A. L. (1986) Reproduction in the female. In: Sturkie, P. D. (ed.) Avian Physiology. Springer Verlag, New York, pp. 407–431.Google Scholar
  24. 24.
    Lam, K. M. (1997) Activation, adhesion, migration and death of chicken thrombocytes. Comp. Haematol. Int. 1, 81–87.CrossRefGoogle Scholar
  25. 25.
    Leonard, J. L. (1982) Clinical laboratory examinations. In: Petrak, M. L. (ed.) Diseases of Cage and Aviary Bird Lea and Febiger, Philadelphia, PA, pp. 269–303.Google Scholar
  26. 26.
    Lumeij, J. T. (1994) Avian clinical enzymology. Semin. Avian. Exot. Pet 3, 14–24.Google Scholar
  27. 27.
    Mostaghni, K., Badiei, K., Fazeli, A. (2005) Haematological and biochemical parameters and the serum concentrations of phosphorus, lead, cadmium and chromium in flamingo (Phoenicopterus rubber) and black-headed gull (Larus ridibundus) in Iran. Comp. Clin. Pathol. 14, 146–148.CrossRefGoogle Scholar
  28. 28.
    Natt, M. P., Herrick, C. A. (1952) A new blood diluent for counting the erythrocytes and leukocytes of the chicken. Poult. Sci. 31, 735–738.CrossRefGoogle Scholar
  29. 29.
    Okhawa, H., Ohishi, N., Yogi, K. (1979) Assay for lipid peroxidation in animal tissue by thiobarbitu-ric acid reaction. Analyt. Biochem. 95, 351–354.CrossRefGoogle Scholar
  30. 30.
    Reznick, D., Nunney, L., Tessier, A. (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol. Evol. 15, 421–425.CrossRefGoogle Scholar
  31. 31.
    Rosa, C. D., Rosa, R., Rodrigues, E., Bacila, M. (1993) Blood constituents and electrophoretic patterns in Antarctic birds: penguins and skuas. Comp. Biochem. Physiol. 104, 117–123.CrossRefGoogle Scholar
  32. 32.
    Ruiz, X., Oro, D., Gonzalez-Solís, J. (1995) Incidence of a Haemoproteus lari parasitemia in a threatened gull: Larus audouinii. Ornis Fennica 72, 159–164.Google Scholar
  33. 33.
    Shave, H. (1986) Clinical pathology. In: Fowler, M. E. (ed.) Zoo and Wild Animal Medicine. Saunders, St. Louis, MO, pp. 357–363.Google Scholar
  34. 34.
    Sturkie, P. D. (1986) Body fluids: Blood. In: Sturkie, P. D. (ed.) Avian Physiology. Springer Verlag, New York, pp. 102–120.CrossRefGoogle Scholar
  35. 35.
    Van Wyk, E., van der Bank, H., Verdoorn, G. H. (1998) Dynamics of haematology and blood biochemistry in free-living African whitebacked vulture (Pseudogyps africanus) nestlings. Comp. Biochem. Physiol. 120, 495–508.CrossRefGoogle Scholar
  36. 36.
    Villouta, G., Hargreaves, R., Riveros, V. (1997) Haematological and clinical biochemistry findings in captive Humboldt penguins (Spheniscus humboldti). Avian Pathol. 26, 851–858.CrossRefGoogle Scholar
  37. 37.
    Viñuela, J. M., Ferrer, M., Recio, F. (1991) Age-related variations in plasma levels of alkaline phosphatase, calcium and inorganic phosphorus in chicks of two species of raptors. Comp. Biochem. Physiol. 99, 49–54.CrossRefGoogle Scholar
  38. 38.
    Vleck, C. M., Vertalino, N., Vleck, D., Bucher, T. L. (2000) Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor 102, 392–400.CrossRefGoogle Scholar
  39. 39.
    Wolf, S. H., Schreiber, R. W., Kahan, L., Torres, J. J. (1985) Seasonal, sexual and age-related variation in the blood composition of the brown pelican (Pelecanus occidentalis). Comp. Biochem. Physiol. 82, 837–846.CrossRefGoogle Scholar
  40. 40.
    Zinkl, J. G. (1986) Avian Hematology. In: Jain, N. C. (ed.) Schalm’s Veterinary Haematology. Lea and Febiger, Philadelphia, pp. 256–274.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Maria T. Antonio Garcia
    • 1
    Email author
  • Y. Hermosa
    • 1
  • J. I. Aguirre
    • 2
  1. 1.Departamento de Fisiología Animal II (Fisiologia Animal), Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Zoología y Antropología Física, Facultad de BiologiaUniversidad Complutense de MadridMadridSpain

Personalised recommendations