Acta Biologica Hungarica

, Volume 61, Issue 4, pp 498–511 | Cite as

Influence of Genotype and Explant Source on the In Vitro Regeneration Ability of Different Melon Varieties

  • Erzsébet Kiss-Bâba
  • Sarolta Pânczél
  • I. Velich
  • G. D. BisztrayEmail author


Nine genotypes of melon (Cucumis melo L.) were selected for the investigation of regeneration. Most of the tested varieties showed regeneration ability on medium containing 0.5 mg 1−1 or 1 mg 1−1 BA, but following the appearance of shoot buds, only six varieties produced leafy shoots. The effect of combinations of BA with different auxins (IAA, NAA, 2,4-D) and ABA in the culture medium on shoot regeneration was tested on cotyledon expiants of ‘Hógolyó’ and ’Hale’s Best’. To establish optimal conditions for the adventitious shoot induction six types of seedling-derived expiants were prepared from seedlings of four different ages. The best results for shoot forming capacity were achieved with cotyledons followed by decapitated seedlings and hypocotyls derived from 4-day-old seedlings. Cotyledon segments of ‘Hógolyó’ and ‘Hale’s Best’ were also cultivated on media with different concentrations of IAA and BA supplemented with 0.26 mg 1−1 ABA. The highest number of well-formed plantlets was counted for ‘Hógolyó’ on the medium supplemented with 0.9 mg 1−1 BA+0.6 mg 1−1 IAA+0.26 mg 1−1 ABA. This is the first report on the in vitro regeneration of ’Hógolyó’ from decapitated seedling and hypocotyl expiants and of ‘Javitott Zentai’, ‘Muskotály’, ‘Hógolyó’, ‘Tétényi csereshéjú’ and ‘Magyar Kincs’ from cotyledon expiants.


Melon in vitro regeneration cotyledon decapitated seedlings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Barbara Harasztos for the critical reading and revising of the manuscript. Thanks are also due to Agnes Gyurcsa-Millei for technical assistance, and to Oliver Kiss for his help in the statistical analysis.


  1. 1.
    Amutha, S., Kathiravan, K., Singer, S., Jashi, L., Shomer, I., Steinitz, B., Gaba, V. (2009) Adventitious shoot formation in decapitated dicotyledonous seedlings starts with regeneration of abnormal leaves from cells not located in a shoot apical meristem. In Vitro Cell Dev. Pl. 45, 758–768.CrossRefGoogle Scholar
  2. 2.
    Curuk, S., Cetiner, S., Gaba, V. (2002) In vitro regeneration of some Turkish melon (Cucumis melo L.) cultivars. Biotechnol. Biotech. Eq. 16, 39–46.Google Scholar
  3. 3.
    Curuk, S., Ananthakrishnan, G., Singer, S., Xia, X. D., Elman, C., Nestel, D., Cetiner, S., Gaba, V. (2003) Regeneration in vitro from the hypocotyl of Cucumis species produces almost exclusively diploid shoots, and does not require light. HortScience 38, 105–109.CrossRefGoogle Scholar
  4. 4.
    Debeaujon, I., Branchard, M. (1992) Induction of somatic embryogenesis and caulogenesis from cotyledon and leaf protoplast-derived clones of melon (Cucumis melo L.). Plant Cell Rep. 12, 37–40.CrossRefGoogle Scholar
  5. 5.
    Dong, J. Z., Yang, M. Z., Jia, S. R., Chua, N. H. (1991) Transformation of melon (Cucumis melo L.), and expression of the cauliflower mosaic virus 35S promoter in transgenic melon plants. Bio/ Technology 9, 858–863.Google Scholar
  6. 6.
    Fang, G., Grumet, R. (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep. 9, 160–164.CrossRefGoogle Scholar
  7. 7.
    Fâri, M., Csânyi, M., Mitykó, J., Peredi, A., Szâsz, A., Csillag, A. (1995) An alternative pathway of in vitro organogenesis in higher plants: Plant regeneration via decapitated hypocotyls in three solana-ceous vegetable genera. Hort. Sci. - Kertészettud. Biotech. 27, 9–15.Google Scholar
  8. 8.
    Ficcadenti, N., Rotino, G. L. (1995) Genotype and medium affect shoot regeneration of melon. Plant Cell Tissue Org. Cult. 40, 293–295.CrossRefGoogle Scholar
  9. 9.
    Gaba, V., Elman, C., Watad, A. A. (1996) Ancymidol hastens in vitro bud development in melon. HortScience 31, 1223–1224.CrossRefGoogle Scholar
  10. 10.
    Gaba, V., Schlarman, E., Elman, C., Sagee, O., Watad, A. A., Gray, D. J. (1999) In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons. In Vitro Cell Dev. Pl. 35, 1–7.CrossRefGoogle Scholar
  11. 11.
    Galperin, M., Paths, L., Ovadia, A., Wolf, D., Zelcer, A., Kenigsbuch, D. (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breeding 12, 66–69.CrossRefGoogle Scholar
  12. 12.
    Galperin, M., Zelcer, A., Kenigsbuch, D. (2003) High competence for adventitious regeneration in the BU-21/3 melon genotype is controlled by single dominant locus. HortScience 38, 1167–1168.CrossRefGoogle Scholar
  13. 13.
    Kathal, R., Bhatnagar, S. P., Bhojwani, S. S. (1986) Regeneration of shoots from hypocotyl callus of Cucumis melo cv. Pusa Sharbati. J. Plant Physiol. 126, 59–62.CrossRefGoogle Scholar
  14. 14.
    Kathal, R., Bhatnagar, S. P., Bhojwani, S. S. (1988) Regeneration of plants from leaf expiants of Cucumis melo cv. Pusa Sharbati. Plant Cell Rep. 7, 449–451.PubMedGoogle Scholar
  15. 15.
    Kathal, R., Bhatnagar, S. P., Bhojwani, S. S. (1994) Plant regeneration from the callus derived from root expiants of Cucumis melo L. cv. Pusa Sharbati. Plant Sci. 96, 137–142.CrossRefGoogle Scholar
  16. 16.
    Kintzios, S. E., Taravira, N. (1997) Effect of genotype and light intensity on somatic embryogenesis and plant regeneration in melon (Cucumis melo L.). Plant Breeding 116, 359–362.CrossRefGoogle Scholar
  17. 17.
    Liborio-Stipp, L. C., Januzzi Mendes, B. M., Stefano Piedade, S. M. D., Martinelli Rodriguez, A. P. (2001) In vitro morphogenesis of Cucumis melo var. inodorus. Plant Cell Tissue Org. Cult. 65, 81–89.CrossRefGoogle Scholar
  18. 18.
    Molina, R.V., Nuez, F. (1995) Characterization and classification of different genotypes in a population of Cucumis melo based on their ability to regenerate shoots from leaf expiants. Plant Cell Tissue Org. Cult. 43, 249–257.Google Scholar
  19. 19.
    Molina, R. V., Nuez, F. (1995) Correlated response of in vitro regeneration capacity from different source of expiants in Cucumis mel. Plant Cell Rep. 15, 129–132.CrossRefGoogle Scholar
  20. 20.
    Moreno, V., Garcia-Sogo, M., Cranell, I., Garcia-Sogo, B., Roig, L. A. (1985) Plant regeneration from calli of melon (Cucumis melo L. cv. ‘Amarillo Oro’). Plant Cell Tissue Org. Cult. 5, 139–146.CrossRefGoogle Scholar
  21. 21.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 155, 473–497.CrossRefGoogle Scholar
  22. 22.
    Niedz, R. P., Smith, S. S., Dunbar, K. B., Stephens, C. T., Murakishi, H. H. (1989) Factors influencing shoot regeneration from cotyledonary expiants of Cucumis melo. Plant Cell Tissue Org. Cult. 18, 313–319.CrossRefGoogle Scholar
  23. 23.
    Nunez-Palenius, H. G., Gomez-Lim, M., Ochoa-Alejo, N., Grumet, R., Lester, G., Cantliffe, D. J. (2008) Melon fruits: Genetic diversity, physiology, and biotechnology features. Critical Reviews in Biotechnology 28, 13–55.CrossRefGoogle Scholar
  24. 24.
    Oridate, T., Atsumi, H., Ito, S., Araki, H. (1992) Genetic difference in somatic embryogenesis from seeds in melon (Cucumis melo L.). Plant Cell Tissue Org. Cult. 29, 27–30.CrossRefGoogle Scholar
  25. 25.
    Szabó, Z., Gyulai, G., Humphreys, M., Lágler, R., Bittsânszky, A., Horvâth, L., Holly, L., Heszky, L. (2005) Genetic variation of melon (C. melo) compared to an extinct landrace from the Middle Ages (Hungary). Euphytica 146, 87–94.CrossRefGoogle Scholar
  26. 26.
    Szamosi, C. (2005) The importance of Hungarian melon (Cucumis melo L.) landraces, local types and old varieties (Review). Int. Jour. Hort. Sci. 11, 83–87.Google Scholar
  27. 27.
    Tabei, Y., Kanno, T., Nishio, T. (1991) Regulation of organogenesis and somatic embryogenesis by auxin in melon, Cucumis melo L. Plant Cell Rep. 10, 145–148.CrossRefGoogle Scholar
  28. 28.
    Yadav, R. C., Saleh, M. T., Grumet, R. (1996) High frequency shoot regeneration from leaf expiants of muskmelon. Plant Cell Tissue Org. Cult. 45, 207–214.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Erzsébet Kiss-Bâba
    • 1
  • Sarolta Pânczél
    • 1
    • 2
  • I. Velich
    • 1
  • G. D. Bisztray
    • 1
    Email author
  1. 1.Department of Genetics and Plant Breeding, Faculty of Horticultural ScienceCorvinus University of BudapestBudapestHungary
  2. 2.Department of Applied GenomicsAgricultural Research Institute of the Hungarian Academy of SciencesMartonvâsârHungary

Personalised recommendations