Acta Biologica Hungarica

, Volume 61, Issue 4, pp 486–497 | Cite as

Nutrient Uptake and Management Under Saline Conditions in the Xerohalophyte: Tecticornia Indica (Willd.) Subsp. Indica

  • M. RabhiEmail author
  • S. Hajji
  • Najoua Karray-Bouraoui
  • Deborah Giuntini
  • Antonella Castagna
  • A. Smaoui
  • Annamaria Ranieri
  • C. Abdelly


In the present investigation, we studied uptake and management of the major cations in the xerohalophyte, Tecticornia indica (Willd.) subsp. indica as subjected to salinity. Plants were grown under greenhouse conditions at various salinity levels (0, 100, 200 and 400 mM NaCl) over 110 days. At harvest, they were separated into shoots and roots then analyzed for water contents, dry weights (DW), and Na+, K+, Ca2+, and Mg2+ contents. Plants showed a growth optimum at 200 mM NaCl and much better tissue hydration under saline than non-saline conditions. At this salt concentration (200 mM NaCl), shoot Na+ content reached its highest value (7.9 mmol • g−1 DW). In spite of such stressful conditions, salt-treated plants maintained adequate K+, Ca2+, and Mg2+ status even under severe saline conditions. This was mainly due to their aptitude to selectively acquire these essential cations and efficiently use them for biomass production.


Biomass production cation/sodium selectivity Na-hyperaccumulation nutrient use efficiency xerohalophyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelly, C., Lachâal, M., Grignon, C., Soltani, A., Hajji, M. (1995) Association épisodique d’halophy-tes stricts et de glycophytes dans un écosystème hydromorphe salé en zone semi-aride. Agronomie 15, 557–568.CrossRefGoogle Scholar
  2. 2.
    Ben Hamed, K., Debez, A., Chibani, F., Abdelly, C. (2004) Salt response of Crithmum maritimum, an oleagineous halophyte. Trop. Ecol. 45, 151–159.Google Scholar
  3. 3.
    Bernstein, L., François, L. E., Clark, R. A. (1974) Interactive effects of salinity and fertility on yields of grains and vegetables. Agron. J. 66, 412–421.CrossRefGoogle Scholar
  4. 4.
    Binet, R (1999) Halophytes. In: Michel, A. (ed.) Dictionnaire de la botanique. Encyclopaedia Universali. Paris, pp. 549–553.Google Scholar
  5. 5.
    Cramer, G. R., Lynch, J., Laüchli, L., Epstein, E. (1987) Influx of Na, K and Ca into roots of salt-stressed cotton seedlings. Plant Physiol. 83, 510–516.CrossRefGoogle Scholar
  6. 6.
    Epstein, E., Rains, D. W., Elzam, O. E. (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad Sci. USA 49, 684–692.CrossRefGoogle Scholar
  7. 7.
    Flowers, T. J., Colmer, T. D. (2008) Salinity tolerance in halophytes. New Phytol. 179, 945–963.CrossRefGoogle Scholar
  8. 8.
    Gerard, C. J. (1971) Influence of osmotic potential, temperature, and calcium on growth of plant roots. Agron. J. 63, 555–558.CrossRefGoogle Scholar
  9. 9.
    Glenn, E. P., Brown, J. J., Blumwald, F. (1999) Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255.CrossRefGoogle Scholar
  10. 10.
    Grattan, S. R., Grieve, C. M. (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Envir. 38, 275–300.CrossRefGoogle Scholar
  11. 11.
    Grattan, S. R., Grieve, C. M. (1999) Salinity-mineral nutrient relations in horticultural crops. Sci. Hort. 78, 127–157.CrossRefGoogle Scholar
  12. 12.
    Greenway, H., Munns, R. (1980) Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 31, 149–190.CrossRefGoogle Scholar
  13. 13.
    Hafsi, C., Lakhdar, A., Rabhi, M., Barhoumi, Z., Abdelly, C., Ouerghi, Z. (2007) Interactive effects of NaCl and potassium availability on growth, water status, and mineral nutrition of Hordeum maritimum. J. Plant Nutr. Soil Sci. 170, 469–473.CrossRefGoogle Scholar
  14. 14.
    Hewitt, E. J. (1966) Sand and water culture methods used in the study of plant nutrition. Commonw. Bur. Hortic. Tech. Commun. 22, 431–446.Google Scholar
  15. 15.
    Hunt, R. (1990) Basic Growth Analysis. Plant Growth Analysis for Beginners. Unwin Hyman, London.CrossRefGoogle Scholar
  16. 16.
    Kao, W. Y., Tsai, H. C., Tsai, T. T. (2001) Effect of NaCl and nitrogen availability on growth and photosynthesis of a mangrove species, Kandelia candel L. Druce seedlings. J. Plant Physiol. 158, 841–846.CrossRefGoogle Scholar
  17. 17.
    Khan, M. A., Ungar, I. A., Showalter, A. M. (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J. Plant Nutr. 28, 1365–1374.CrossRefGoogle Scholar
  18. 18.
    Koyro, H. W. (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 56, 136–146.CrossRefGoogle Scholar
  19. 19.
    Koyro, H. W., Geibler, N., Hussin, S., Huchzermeyer, B. (2008) Survival at extreme locations: Life strategies of halophytes - The long way from system ecology, whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites. In: Abdelly, C., Ashraf, M., Oztiirk, M., Grignon, C. (ed.) Biosaline Agriculture and Salinity Tolerance in Plants. Birkhaäser Verlag AG, pp. 241–246.Google Scholar
  20. 20.
    Le Houérou, H. N., Ionesco, T. (1973) Appétibilité des espèces végétales de la Tunisie steppique. AG-TUN 71/525, FAO, Rome.Google Scholar
  21. 21.
    Lynch, J., Läuchli, A. (1985) Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol. 99, 345–354.CrossRefGoogle Scholar
  22. 22.
    Maathuis, F. J. M., Sanders, D. (1996) Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 96, 158–168.CrossRefGoogle Scholar
  23. 23.
    Mengel, K., Kirkby, E. A. (1982) Principles of Plant Nutrition. 3rd ed. International Potash Institute, Bern, Switzerland.Google Scholar
  24. 24.
    Messedi, D., Labidi, N., Grignon, C., Abdelly, C. (2004) Limits imposed by salinity to the growth of the halophyte Sesuvium portulacastrum. J. Plant Nutr. Soil Sci. 167, 720–725.CrossRefGoogle Scholar
  25. 25.
    Messedi, D., Sleimi, N., Abdelly, C. (2003) Some physiological and biochemical aspects of salt tolerance of Sesuvium portulacastrum. In: Lieth, H. (ed.) Cash Crop Halophytes: Recent Studies. Kluwer Academic Publishers, pp. 71–77.CrossRefGoogle Scholar
  26. 26.
    Munns, R., Tester, M. (2008) Mechanisms of salt tolerance. Annu. Rev. Plant Biol. 59, 651–681.CrossRefGoogle Scholar
  27. 27.
    Nagarajan, D., Sivasankaramoorthy, S., Venkatesan, A. (2008) Salinity tolerance on growth and organic content of Arthrocnemum indicum Moq. Plant Arch. 8, 245–248.Google Scholar
  28. 28.
    Pitman, M. G. (1971) Uptake and transport of ions in barley seedlings. I. Estimation of chloride fluxes in cells of excised roots. Aust. J. Biol. Sci., 24, 407–421.CrossRefGoogle Scholar
  29. 29.
    Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M. H, Abdelly, C., Smaoui, A. (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non-leaching conditions. Afr. J. Ecol. 47, 463–268.CrossRefGoogle Scholar
  30. 30.
    Reinmann, C., Breckle, S. W. (1993) Sodium relations in Chenopodiaceae. Plant Cell Environ. 16, 323–328.CrossRefGoogle Scholar
  31. 31.
    Römer, W., Schenk, H. (1998) Influence of genotype on phosphate and utilization efficiencies in spring barley. Eur. J. Agron. 8, 215–224.CrossRefGoogle Scholar
  32. 32.
    Ruiz, D., Martinez, V., Cerdá, A. (1997) Citrus response to salinity: growth and nutrient uptake. Tree Physiol. 17, 141–150.CrossRefGoogle Scholar
  33. 33.
    Siddiqi, M. Y., Glass, A. D. M. (1983) Studies of the growth and mineral nutrition of barley varieties. I. Effect of potassium supply on the uptake of potassium and growth. Can. J. Bot. 61, 671–678.CrossRefGoogle Scholar
  34. 34.
    Sleimi, N., Abdelly, C. (2002) Growth and mineral nutrition of some halophytes under seawater irrigation. In: Ahmed, R., Malik, K. A. (eds) Prospects for Saline Agriculture. Academic Press, Netherland, pp. 403–410.CrossRefGoogle Scholar
  35. 35.
    Tester, M., Davenport, R. (2003) Na+ Tolerance and Na+ Transport in Higher Plants. Ann. Bot. 91, 5003–5027.CrossRefGoogle Scholar
  36. 36.
    Weber, D. J., Ansari, R., Gul, B., Khan, M. A. (2007) Potential of halophytes as source of edible oil. J. Arid. Environ. 68, 315–321.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Rabhi
    • 1
    Email author
  • S. Hajji
    • 1
  • Najoua Karray-Bouraoui
    • 3
  • Deborah Giuntini
    • 2
  • Antonella Castagna
    • 2
  • A. Smaoui
    • 1
  • Annamaria Ranieri
    • 2
  • C. Abdelly
    • 1
  1. 1.Laboratory of Extremophile Plants (LPE)Borj Cedria Centre of BiotechnologyHammam-lifTunisia
  2. 2.Dipartimento di Chimica e Biotechnologie AgrarieUniversità di PisaPisaItaly
  3. 3.Unité de Physiologie et Biochimie de la tolérance au sel des plantes, Département de Biologie, Faculté des Sciences de TunisCampus UniversitaireTunisTunisia

Personalised recommendations